
.

Presentation of Relay Fault, Settings and Waveform
data as Human and Machine-Readable Web Pages

KEYWORDS: HTML, XML, XHTML, Web Server/Client, TCP/IP, Oscillographic
Data, Relay Primary Settings, Data Neutralization, Self-Descriptive Data
Structures, Comma-Delimited ASCII

AUTHOR: William T. Shaw, PhD – V.P. Qualitrol, Systems Division

SUBMITTED: For consideration by the 2003 Fault and Disturbance Analysis
Conference

ABSTRACT:

Almost all modern, microprocessor-based protective relays contain a vast amount of
information including real-time measurements and status, settings, statistical calculations,
“power” calculations and event based data such as fault summary records, sequence of
event data and oscillographic waveform captures. All relay manufacturers provide some
form of proprietary software package for interrogating their relays (often several versions)
and presenting this data to a user. Many relays offer partial or full access to this data via
“standard” interfaces and protocols such as Modbus, DNP3.0 and IP (Ethernet) versions
of the same. Unfortunately, this means that anyone needing to see this data needs a copy
of the relevant (and often quite different) software packages from each vendor, and access
to a dial-in phone circuit to the respective substations where the relays reside. Data
uploaded to the user’s PC may be lost from the relay and will often be stored in the PC in
a proprietary format. This makes sharing of the data nearly impossible unless everyone
also has copies of the vendor’s software tools. Although most relays provide similar types
of event information, the differences in data format, representation and quantity make it
impossible to “share” data across vendor platforms without converting the data into a
“generic” representation such as COMTRADE. But even that approach doesn’t address
all of the data available from the relays. For most of us, the one universal mechanism we
have on our desktop, for seeking and viewing information, is the web browser. Therefore
it is logical that making vital engineering data “universally” available (given necessary
levels of access protection) can best be done by offering that data as web pages. In a
similar vein, delivery of this data to 3rd-party applications and user-developed
applications would make this data more useful. Unfortunately no good “standards” exist

.

for providing vendor-neutral data representations of such complex data. But, a new type
of “web document” called an XML document, provides a simple way to deliver even
complex data to 3rd-party applications. This paper discusses experiences with, and the
challenges related to, extracting data from various types of relays via different interface
mechanisms and turning this data into both conventional, human-readable (HTML) web
pages and into XML web pages for delivery to 3rd-party applications.

.

Presentation of Relay Fault, Settings and Waveform
data as Human and Machine-Readable Web Pages

William T. Shaw, PhD - V.P. Qualitrol/Systems Division
Hunt Valley, Maryland U.S.A.

INTRODUCTION - One of the difficulties faced by a typical protection engineer, and by
the system operations personnel, is collecting, analyzing and managing the data generated
and captured around the power system whenever a fault occurs. When you go into a
typical substation these days you often find a number of IEDs that are located there
totally, or partially, in order to “capture” event-related data. These IEDs may include
Remote Terminal Units (RTU), sequence of event (SOE) recorders, digital fault recorders
(DFR), power quality monitors and, most especially, protective relays. Fault events,
depending upon their cause and nature, may be “seen” in multiple substations and by
multiple IEDs. An RTU might record status input changes as part of its SOE monitoring.
A DFR unit might note the event and “snapshot” oscillographic data, both pre and post
event, as well as generating a summary of the key fault attributes. The relay(s) involved
in clearing the fault will also contain a large amount of data: fault summary information,
oscillographic waveforms, SOE data, etc. In addition, the specific, active “settings” of
these relays represent additional data that may be relevant to the event, or at least to
understanding the protective response to the fault. All told, a typical fault condition can
create a lot of data in a lot of different IEDs, frequently in multiple substations. All of
this data (not yet information) is relevant to understanding the actual fault (its cause,
duration, etc.) and how the power system and protection scheme responded to the fault.
The question is: how can all such data be collected, stored, managed and made available
to the appropriate people and even made available for additional analysis and usage?

TOWER OF BABEL – Unfortunately, through the years, most (all?) vendors of the
various types of IEDs have taken it upon themselves to develop proprietary approaches to
the collection, representation and storage of data. (We are equally guilty in this regard.)
In addition, there is also the problem of communicating with the various IEDs for the
purpose of extracting this data. Often (although less often) vendors have also taken a
proprietary approach in this aspect of their products. This might be a result of being the
“first” vendor of such a product, or just because they thought they could do it “better”
than the competition. For whatever the reason, the net result is that there has been little
or no compatibility between the various IEDs, even of the same “class” (such as DFRs or
relays). Today, more and more IEDs provide for some level of protocol compatibility,
typically by offering a serial DNP3.0 or Modbus communications capability. But, this
does not address the differences in how data is represented or what data is provided. In

.

addition, although some IEDs
have the ability to package data in
a “Standard” format (such as
using COMTRADE format for
oscillographic data) most older
IEDs do not.

DATA COLLECTION – In many
(most?) utilities, the gathering of
the data that results from a fault,
or other system event, is done in a
less-than-optimal manner:
engineering personnel generally
have to “dial-in” (via the public
telephone system) to effected
substations and use vendor/IED-
specific software packages to
interrogate and extract the data.
This may involve multiple dial-in
sessions (one per IED) and the use of several different software packages (one per
vendor/IED.) Either an engineer has to be familiar with multiple such packages, or
multiple engineers may have to cooperate in the data collection process. The resulting
data is generally captured and stored on the PC that was used to run the IED vendor’s
software, and all too often in a proprietary form and format. (Refer to Figure 1.0.)

Although the various IED vendor’s software packages provide individual capabilities for
display (and maybe even analysis) of the captured data from their respective IED, they
don’t normally offer any means for integrating and displaying the data from others. Nor
do they typically provide a means for “exporting” the captured data in a form that would
allow its use in other applications. Because of the inability to consolidate data from
multiple sources, the process of system-wide data reconciliation (when done at all) is
often done by hand with engineering personnel having to manually correlate data
extracted from these multiple sources.

DATA EXTRACTION – Although the data collected in many of these IEDs is of a
similar nature (e.g. time-tagged sequence-of-event data, time-sampled waveform data,
etc.) The mechanisms provided for extracting this data can be very different. This is
usually a result of the combination of the communications protocol used and the way data
is “mapped” into these protocols. Obviously the software tools provided by the
respective IED vendors are designed to be compatible with these mechanisms.
Unfortunately this doesn’t help us to consolidate data from multiple, incompatible IEDs.
In order to extract the available data we have to be able to communicate with the IEDs.
Although more and more of the latest IEDs support LAN-style connectivity (Ethernet)

Substation Port switch

TelCo

DFR, Relays, SER, RTU, etc…..

User’s PCs with
IED-specific software

Figure 1.0 – Typical IED data access method

.

traditionally the communications interfaces with IEDs have been serial (RS-232C or RS-
485), low speed and based on one of the three following approaches:

1. “Dumb-terminal” ASCII
2. Proprietary communications protocol
3. “Standard” communications protocol

For some IED manufacturers, the approach has been to provide a “dumb terminal” ASCII
mode of communications whereby data is output in the form of an ASCII “report”. The
IED actually “prints” a report, complete with carriage-return and line-feed characters and
headings, in response to a simple ASCII “command”. This is an inefficient means for
extracting data and one potentially subject to communications errors (since no
communications error detection and correction scheme is provided) but it does allow data
to be human-readable. An application that wants to extract and use the data from such an
IED will have to capture the stream of ASCII and then “parse” it looking for actual data.
One of the dangers in using such an interface is that if the IED vendor changes, even
slightly, the format of the “print out”, the application that is doing the “parsing” of that
output may no longer function properly. Computer programmers often refer to such a
“report” parsing/dissecting application as a “screen scraper”.

Prior to the emergence of “standard” communications protocols, such as DNP3.0 and
Modbus, IED manufacturers provided communication in the form of a custom-designed,
proprietary protocols. Unlike an ASCII interface, these protocols could provide much
greater data efficiency (more data per bytes exchanged) and incorporated error detection
and correction mechanisms. But, due to their proprietary nature, IED-specific “drivers”
must be developed in order to communicate with these IEDs, presuming that the
necessary protocol information is publicly available.

Having IEDs that offer their data via a “standard” protocol interface is an improvement,
in that the basic protocol specifications are known. Unfortunately, these specifications do
not totally address the manner in which a vendor packs his data into the protocol
“wrapper”.

DATA REPRESENTATION – Numeric quantities, along with other types of data, can be
represented in a wide range of equally valid forms: integer, fixed-point decimal, floating
point, scientific notation, etc. Data can be optionally accompanied by additional
information that “qualifies” the data: time and/or date tags, quality flags, validity flags,
etc. Data can be “encoded” and represented in an alternate manner: value of ‘2’ means
“Lockout”, value of ‘5’ means “Tripped”, etc. The representation of date and time
values themselves can be made in a variety of ways. Unless a protocol specifically
defines allowable data representations, the IED vendor is free to choose their preferred
ways of representing such data. The popular Modbus protocol essentially defines no data
representations beyond unsigned 16-bit integers. On the other hand the DNP3.0 protocol

.

defines multiple (too many?) ways
of representing the same kind of
data. In both cases the IED vendor
is free to be creative within the
confines of the protocol
specification. Often this means
that a “generic” Modbus or
DNP3.0 driver cannot be used to
extract IED data. What is required
is an IED-specific version of these
protocols that includes knowledge
of how the data is “packed” and
represented and how to manipulate
the interface. (Refer to Figure 2.0.)
A good example is the way some
relay vendors use Modbus to
deliver oscillographic data. There
are not enough “registers” in the

basic Modbus specification to hold all of the waveform sample data and so typically a
“bank” of registers are used to “page” through the data, by writing the desired page
number into another specific register. The driver needs to iterate through all of the
available “pages” in order to extract the waveform data. Nothing in the Modbus protocol
defines this usage or mechanism. It is specific to the vendor and IED, but does not
violate the base dictates of the Modbus protocol specification. Similar schemes have
been used with the DNP3.0 protocol as well because although DNP supports more
complex data types/structures, it still has a fixed set that must be manipulated to transport
many of the very complex and extensive data classes found in modern IEDs.

DATA STORAGE – Presuming that you have braved the rigors of communicating with
all of the various IEDs in the substations, and have developed drivers that can extract the
available data, where do you then put this data and in what format do you store it? One
alternative would be to directly create web pages (XHTML) from the extracted data and
be done with it. Since every IED, even those of the same type, have vastly different data
representations, this would mean having an IED-specific web creation task for each IED.
In addition, this would not make the data available for other purposes. A second, and
preferable alternative, is to translate the data into a “vendor-neutral” format and store it
into a relational database. There is certainly a LOT of data available from various IEDs
and it needs to be stored in a manner that facilitates locating and associating related data.
Fortunately, today we have low cost and high performance PCs that can be equipped with
loads of RAM and hard disk space. It is not unreasonable to have 50 Gigabytes of hard
disk space on a PC and 512 Mbytes of RAM. With the current crop of 1+ Gigahertz
Pentium-class processors there is no reason why commercial relational database packages
can’t be used for data storage purposes, even without the expense of a multi-processor

5010
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033

0011010011001011

0011010011001011

0011010011001011

0011010011001011

0011010011001011

0011000011110010

0011000011110010

0011000011110010

0111111011111101

0111111011111101

0111111011111101

0111111011111101

0110100000001000

0110100000001000

0110100000001000

1111111000000000

1111111000000000

1111111000000000

1110011100011101

1110011100011101

1110011100011101

IIEEEEEE ffllooaattiinngg--ppooiinntt

UUnnssiiggnneedd IInntteeggeerr nnuummbbeerrss

TTiimmee//DDaattee

IInntteeggeerr nniibbbbllee ccooddeess::

BBoooolleeaann bbiitt

88 CChhaarraacctteerr AASSCCIIII

0000--MMaannuuaall
0011--LLooccaall
1100--LLoocckkeedd
1111--TTaaggggeedd

VVeennddoorrss ttaakkee lloottss ooff lliibbeerrttiieess iinn hhooww tthheeyy
““ppaacckk”” ddaattaa iinnttoo vvaarriioouuss pprroottooccoollss:: MMOODDBBUUSS

RREEGGIISSTTEERRSS

Figure 2.0 – Example of data “packing” in Modbus

.

based “server”. The data extracted from substation IEDs generally falls into three (3)
categories:

1. real-time data (constantly updating)
2. event-based data (event generated and eventually over-written)
3. settings/parameter data (occasionally changed)

Relational databases allow users to define “records” (data structures) that will be used to
hold data, as well as “key” information that uniquely identifies each set of such data. A
record can contain lots and lots of data items (such as the oscillographic waveform data
samples or the current primary/alternate settings of a relay) and combinations of different
types of data (numbers, time/date, text strings, etc.) For real-time data storage, and
storage of settings, a table is created to hold all such data and individual records are re-
written (updated) with data as each data item is reported. For other types of data “blank”
records of a given type are filled in with actual data and then these records appended to
tables that hold records of this same type.

Tables holding real-time data and relay settings data are normally of a fixed length
whereas tables that hold event-based data “grow” as new event records are added over
time. The placement of the individual records into these tables is based on the specified
“key” information. For event data records the “key” information might be time/date of
the event, feeder/circuit associated with the event, the IED associated with the data and
even the name of the substation from which the data was extracted and an indication of
the type of data held in the record. Modern relational databases can hold vast amounts of
very complex data. In addition, the physical/internal representations of specific data types
can be “promoted” into a common form: All numeric data can be stored as 32-bit floating
point values, all strings can be “decoded” (if needed) and stored as 256 characters in

PAIWaveform magintudPBIWav etc…etcStationID CircuitIID THDTime FaultMagnitude SOE Date

Date Time magintudStationID RelayID FaultType FaultDuration PAIWaveform PBIWav etc…etc

IIEEDD CCllaassss:: RReellaayy

IIEEDD CCllaassss:: RReellaayy

VVeennddoorr ““AA””

VVeennddoorr ““BB””

Same “type” of data, although
represented differently

Figure 3.0 – Similar types of IEDs generate similar data, but often represented differently

.

length, all times and dates can be converted to the “universal” millisecond representation
format, etc. Thus, data of a given type will be the “same” (in the database tables),
regardless of its native representation within the various IEDs.

To correlate data records from different IEDs it is necessary to establish a set of identical
data fields such as time/date, station ID, circuit ID and anything else that will help to
identify common and related data records. These data elements will allow us to locate
related records. Of course the data from different IEDs may (will) be somewhat different
in both content and format (Refer to Figure 3.0.) One of the ways in which the UCA2.0
standard and the GOMSFE data object definitions approach “standardization” between
IEDs from different vendors is to define a subset of common data items, in a common
representation form, that all such IEDs must provide (and to assign a standard “name” to
such data items). Additional data is either ignored or must be dealt with as a special
vendor-specific issue. With modern relational databases other approaches are possible:
one method of dealing with data differences is to store all of the data from every type of
IED into individual tables, specifically structured for the data generated by that IED (refer
to Figure 4.0). If standard field names (such as “StationID” or “Date”) are used for the
same type of data from different IEDs, the relational database can manage these
differences. If common keys are maintained, the database packages can “join” the same

types of data from different tables
using the key information. (E.g. If
time/date keys are used for SOE
events, the relational database can
extract all records with matching
keys from all of the various tables,
and collect the specific data into a
common table for manipulation. A
second approach, for a given
“class” of IED is to build a “super
set” record definition that includes
all of the common data, plus all of
the IED-specific data, from all of
the IEDs (refer to Figure 5.0.) Then
the non-applicable fields are merely
ignored when data from a given
IED is written into a record. This
still requires having separate tables
for each IED “class”, although not
for each specific model of IED.

Record for one fault

Record for one fault

Record for one fault

Record for one fault

Record for one fault

Record for one fault

Record for one fault

Record for one fault

Record for one fault

Record for one fault

Record for one fault

Record for one fault

MMoosstt rreecceenntt ffaauulltt

LLeeaasstt rreecceenntt ffaauulltt

CC
hh rr oo nn oo ll oo gg ii cc aa

ll oo rr dd ee rr

SSEELL335511SS ttaabbllee DDPPUU22000000 ttaabbllee

FFaauulltt iinniittiiaatteess ddaattaa rreettrriieevvaall

CCoommmmoonn
KKEEYYSS

CCoommmmoonn
KKEEYYSS

Figure 4.0 – Separate tables for each IED

.

DATA MANIPULATION – Once data has been neutralized (made non-device-specific)
and stored into a relational database, there are many ways in which this data can be
filtered, sorted, related and presented. All of the modern relational database packages
provide graphical user interfaces of some form and offer interactive mechanisms for
exploring the data in the tables. In addition, most also offer some form of data extraction
and exporting mechanism so that data can be brought into other applications, such as

spreadsheets and report generators,
for additional processing and
presentation. In addition, the
automatic creation of web pages
from this data is simplified since
IED-specific issues are eliminated
through the standard representation
of specific data items.

DATA CORRELLATION – Possibly one of the most powerful reasons for storing the
various types of information, collected from the different IED sources, in relational
database tables is the fact that this data can then be searched and correlated to find related
data items. As was mentioned at the beginning of the paper, many types of fault/system
events will cause multiple IEDs at various points around the power system, to capture and
record data about the fault/event. Once stored into relational database tables it is a simple
matter to use the “join” query capability of such databases (see the example given above)
to isolate all data records that resulted from a given event. Data records of differing types
(fault summary, S.O.E. recordings, waveform capture, etc…) may contain vastly different
types of data, but the data is related based on being generated by a common event. These

data records thus would all
contain common “key”
elements (such as date and
time and substation, etc…)
that link them to this common
event and these keys would
allow a user to extract all data
related to a common event,
regardless of the type/class of
IED and the particulars of the
data (refer to Figures 6.0 and
7.0.) Obviously examination
and presentation of the data
would be very data and IED-
class specific.

Vendor A

Vendor B

Vendor C

GOMSFE

IED Class Superset

Figure 5.0 – IED data Subsets and Supersets

Figure 6.0 –Cross-table “filter” selection by user-selected criteria

.

DATA PRESENTATION - Once we have captured and “normalized” data from a bunch
of IEDs, and have the facility to search and sort this data, we are still left with the need to
provide presentation mechanisms for this data. A lot of the data generated by IEDs is
simple in nature: values, times, dates, strings, etc. But, a lot of it is in the form of time-
ordered lists (SOE data) or time-ordered waveform samples (oscillographic data) that
need to be presented graphically for best user comprehension. As previously mentioned,
each IED vendor typically supplies some form of PC-based software package to display
and manipulate the data. The problem for most utilities is that none of these packages are
compatible and few can deal with data from other IEDs, unless the IED can present its
data in a “neutral” form such as COMTRADE file format. In order to allow these
vendor-specific packages to be used, the data extraction mechanism ought to provide for
maintaining the data in a “native” format, as well as dissecting the data and placing it into

relational tables. Thus, the IED vendor’s proprietary applications can still be used to
display and manipulate the data. But, to make this data more widely accessible
(presuming that to be desirable) other possible approaches would be to:

1) use the data presentation capabilities of the relational database packages, or
2) export the data to other applications such as spreadsheets, or
3) develop viewers (web based?) that can work off of the tables.

The majority of the commercial relational database packages have simple visualization
tools that provide for extracting data and presenting it in tabular “report” formats, even

o o o o o

o o o o o

o o o o o

Large number of Substations

IED Class: RevMeter

IED Class: SER

IED Class: Relay

IED Class: DFR

IED Class: PQMeter

IED Class: BrkrMon
Class-specific
storage tables

Figure 7.0 –Record correlation across multiple IED-class relational database tables

Common “keys”
like date, time, substation,

circuit, etc…

Records from various IED
tables that match for

selected criterion of JOIN

.

including simple plotting and charting features similar to those of spreadsheets.
Unfortunately these tools also normally require that database “client” software be present
on the user’s PC. Paying for, and installing, software “client” licenses for every PC
misses the point of making data more universally available.

Most database packages have
the ability to process batch
SQL commands and generate
a text file output from the
results. Such as text file can
usually be imported into
standard PC based
spreadsheet packages where
the data can be manipulated,
plotted and formatted into
displays. Since nearly every
PC comes with spreadsheet
software, this is potentially a
slightly better approach
towards providing universal
data access. Specific
spreadsheets can be

developed (including the necessary data file import commands) and distributed to
everyone who needs data access (refer to Figure 8.0.) These could also be placed on a
common server so that anyone who needs them can obtain a copy.

Possibly the best approach for
making data universally available,
without the need to distribute data
files or software, is to make the data
available in the form of web pages
accessible using standard web
browser software. If there is any
standard software that is universally
provided in every PC sold today, it
is web browser software.
Commercial relational database
packages may also offer the ability
to create static web pages using
table-based data. For dynamic,
interactive web pages it is necessary
to use something more powerful and
flexible, such as Java Applets to

Figure 8.0 – Using spreadsheets to display exported IED data

Figure 9.1 –Java Applet based web display of IED data

.

produce web pages that support interactive access and display of table-based data. An
Applet is able to interact with the relational database tables via a Java Servlet that resides
and runs in the database server computer. Such Applets can be customized for the
specific data requirements of the class of IED for which they are designed. Thus a
separate Applet can be developed for reviewing a relay’s fault summary data or
waveforms or settings, with each Applet designed to handle the type of data produced by
that IED class (refer to Figures 9.1 and 9.2.) With Web/Applet based data access no
special software (other that a web browser) is needed on a user’s PC. Applets can be
developed to run off of the “neutralized” (genericized ?) IED-class-based data in the
relational database tables. Therefore one Applet per IED class is all that is necessary,

rather than having to develop an
Applet per specific IED.
Applets can incorporate a wide
range of HMI capabilities and
functions and be quite
sophisticated in their nature and
operations.

DATA EXCHANGE – Although
some work has been done in the
area of cross-vendor/platform
data exchange (such as using the
COMTRADE file format for
fault recorder waveform data)
there is still a long way to go
towards usable standards. Once
data has been extracted from an
IED, “neutralized” and stored in

a relational database table, the data is available for “export” out of the tables as a file. As
previously mentioned, some databases offer the ability to create comma-delimited text
files which can be imported into other desk-top applications, such as spreadsheets.
Another database export facility is the ability to create XML documents/files from the
table’s data (refer to Figure 10.0.) Unlike mere comma-delimited text, an XML
document contains both the actual data as well as “tags” that can describe the data, its
representation, its structure and its usage. XML “documents” have an additional
advantage: standardized web browser technology can be used to display these documents.
XML documents are wasteful of storage since they often contain a lot more self-
describing information (as “tags”) than they do actual data. But with today’s computers
and huge disk drives, storage is no longer a concern. Industry groups are looking at using
the XML approach for inter-system, inter-application data transfers and as an actual
mechanism for data “neutralizing”. In the future, an increasing number of advanced
applications will accept XML as data input and more IEDs will produce data output
directly as XML documents. IED manufacturers are already building embedded web

Figure 9.2 –Java Applet based web display of IED data

.

server software into their IEDs, but this is normally for human-viewable purposes.
Adding XML web pages will permit generic applications to “view” the IED and
manipulate the available data. This might also be a viable mechanism for merging the
UCA2.0 GOMSFE efforts into the reality of already-available computer/Web technology.
The biggest challenge for using XML as
a delivery mechanism for settings, fault
data and other such complex data, is the
definition of “standard” tags for the
particular data, including sub-tags that
can defined any allowable variations in
the main data type. For example, any
capture of relay fault data ought to
include both TIME and DATE
information. We could agree on tags
such as <TimeOfFault> and
<DateOfFault> to denote these particular
data items. But, since both can have
several different representations (e.g.
date can be represented as “January 3,
2002” or “1/3/02” or several other
representations) we may need sub-tags
called <DateFormat> and
<TimeFormat> that indicate the actual
representation of those data items.
There is a new working group forming
within the IEEE to actually take on the
task of defining standardized tags for use
in XML “pages” that will be used to
deliver electric power information.

CONCLUSION – It has been said that knowledge is power. Today, information is power
and the challenge to most utilities is collecting, managing and disbursing information to
those that need it, in a timely and useable manner. There is a huge amount of raw
information (or just plain data) contained within the various IEDs found in most
substations. Very few utilities have the means or mechanisms that permit them to take
advantage of this information and to use it to their best advantage. Relational database
technology combined with various “Internet” technologies, such as XHTML and XML
web pages, offer a possible approach to taming, harnessing and dispensing this
information.

Figure 10.0 –IED data as XML web document

	Presentation of Relay Fault, Settings and Waveform
	data as Human and Machine-Readable Web Pages
	Presentation of Relay Fault, Settings and Waveform
	data as Human and Machine-Readable Web Pages

