
Managing Smart Devices 
Communications With A Database 

 
 
 
 
 
 
 

Robert M. Orndorff 
Dominion Virginia Power 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Presented to the 
Georgia Tech 

Fault and Disturbance Analysis 
April 26-27, 2004 



Page 2 of 10 

Overview 
This paper will present an introduction to databases and present some database design 
ideas specific to communications with substation IEDs.  Also covered will be the 
implementation of databases used for storing data related to communications with IED 
(Intelligent Electronic Devices) at Dominion.  There will also be discussion of how the 
use of these databases has made it very easy to maintain and distribute up to date phone 
and communications files that are used directly by the program performing the 
communications.  This is meant as an introduction to database concepts and what can be 
accomplished using a database.  The more intricate details of the database tasks will be 
omitted. 

What is a Database? 

Overview 
For purposes of this paper, a database is a computer file, or group of files that holds data.  
The data can then be sorted, grouped, summarized, and reported on.  A single table, such 
as a spreadsheet can be a database.  A collection of many tables with related information 
can also be a database. 
 
A table will have rows and columns.  Each row is considered a record.  All data in a 
given row is related and should always be stored together.  The columns are considered 
fields.  Each record (or row) may have many fields. 

Single table 
Probably the most common database used today is a spreadsheet.  Spreadsheets make 
data entry and printing relatively simple and straightforward.  A simple database consists 
of one or more records, and each record contains one or more fields.  It is very important 
that all fields in a record stay associated with the proper record.  Here is a simple address 
database. 

Table 1 

Name Location 
Clark Kent Metropolis 
Bruce Wayne Gotham City 
 
You will run into problems when attempting any complex functions on the data if it is in 
a spreadsheet program.  Sorting, for example, if not done correctly will result in the data 
becoming corrupted.  Some columns will be sorted while others are not.  In the above 
example, if the name column is sorted and the city column is not, then your database will 
become useless. 
 
A database program will perform the sorting correctly and keep all fields with their 
corresponding records. 

Multiple table 
When the data is more complex than the example above, you may find yourself entering 
the same information into many different records.  Entering the same information 



Page 3 of 10 

multiple times is not only boring, but can lead to other problems such as typographical 
errors.  All fields that should be the same may not be because of a mis-typed character.  
This can also be a maintenance problem if that data were to change at some point in the 
future.  Every place that the repetitious data was entered will have to be updated to the 
new data.  If a typographical error exists, then it may become difficult finding all the 
fields that need updating. 
 
Here is a simple example of some repetitious data.  In the real world, there are many 
more stations and each station is likely to have many relays.  In this table, the station 
name and the phone number is duplicated. 

Table 2 

Station Relay Phone Number 
Elmont Line 555-2358 
Elmont Circuit 555-2358 
Lakeside Line 555-1235 
Lakeside Circuit 555-1235 
 
This is where multiple tables would be useful.  There could be a separate table for station 
names and numbers. 

Table 3 

Station ID Station Name Number 
1 Elmont 555-2358 
2 Lakeside 555-1235 
 
Utilizing this new table to minimize data repetition in the relay Table 2 would work like 
this. 

Table 4 

Station ID Relay 
1 Line 
1 Circuit 
2 Line 
2 Circuit 
 
This table still has all the information contained in Table 2, but now some of the 
information is in Table 3 as well.  It is very easy for a computer to “assemble” this 
information by reading the name and number from Table 3 and putting it with the 
relevant relay information.  This assembling of data typically occurs in the form of a 
report.  This also has the advantage of updating the name and number of every relay at a 
given station by changing the data at a single location. 
 
This type of multi-table database is called a “Relational” database. 

Designing a Relational Database 
The design phase of creating a new database is generally the most difficult.  It is not 
always easy to anticipate what your needs will be in the future.  For example, when we 
created the database we currently use there was only the need for one phone number per 
device.  Now, there may be a phone number as well as an IP address for a given device.  



Page 4 of 10 

There is also the addition of communication port switches and possibly other means of 
communications in the future. 
 
When designing a database, it is necessary to keep in mind the current and future uses of 
the data.  For example, you may want to simply have a list of devices at any given 
substation so that when an operation occurs you can quickly determine if there is an IED 
that can supply you with data.  You may also want to use the data to perform an autopoll.  
In this case it is necessary to have not only the phone (or IP) number, you would also 
need steering codes, port switch commands, passwords, and any other data needed to 
make the connection. 
 
Some of the advantages of using a relational database are: 
Minimizing data repetition - It is better to have the number stored in only one location 
in the database than in many. 
Easier maintenance - By having only one filed to update, it is much easier to do and 
more likely to get done! 
Better data accuracy - Reducing the number of entries also greatly reduces the chance 
of there being a typo in the data.  If there are several fields containing what should be the 
same number and they don’t all agree, it is then more troublesome and time consuming to 
determine which is correct. 

Some Database Design Ideas for IED Communications 
It is very important to do the best you can to plan for future needs when designing a 
database.  A few concepts are presented here. 
 

A Flatfile or single table database 
A single table database can be very useful, however you can expect some repetition of 
data.  The advantage of a single table database is that it’s very easy to maintain and also 
easier for others (i.e. people that are not database experts) to use.  Here is a listing of the 
fields we use in our database of relays. 
 

Field Name Data Type Description 
Station Text Substation name 
Operating Number Text Operating number of device covered by this IED 
Relay Type Text Relay model number 
Performs Fault Location Yes/No Does this relay calculate a fault location 
Fault Data Text Where does fault data go? Local or System 

Operations Center 
Transmission Yes/No Yes if this is considered a Transmission asset 
Interface Device Text Modem, comm processor, RTU, port switch 
Phone Number Text Phone number 
Passwords Text Passwords for access to this device 
In Service Yes/No Is this device currently in service? 
Notes Memo Any other notes about this device 
 
This table layout will provide most of the necessary information to be able to know 
which devices to call and how to get the information out of them.  There are drawbacks to 
this design, but they are manageable.  For example, the station name and phone number 



Page 5 of 10 

are repeated for each device in a given station.  The database program does have the 
ability to copy the previous record’s data with a single keystroke.  If the number or name 
changes, then each record containing that data will have to be changed.  This can be 
manageable with the combination of search and replace and/or the “copy previous 
record” function.  This table is lacking some information that is needed in today’s 
environment.  There is no field for IP address, for example. 
 
One way to more efficiently store the same data is represented in Figure 1. 

Figure 1 - One way to relate several tables 
The same data is stored in this database; even the table titled “Relays” is very similar to 
the single table database example.  The difference is that the phone number and station 
fields are no longer necessary.  The relevant information is linked to other tables. 
 
The new tables are “Communications”, “Stations”, and “IED_Comm_Links”.  Each 
record in the Communications table stores information about a communications method 
and is associated with a station.  One communications method would be a dial up 
modem.  Another would be a network connection.  Now it is possible to have as many 
communications methods to a station as are needed.  This would be very difficult to do 
with a single table database.  An example would be a station that has a phone number and 
also an IP address.  One station may have several phone numbers and IP addresses.  Each 
record in the “Communications” table has a link to one station in the “Stations” table. 
 
The “Stations” table has only a list of station locations and any other information relating 
to that particular station, such as division, district, or supervisor.  Many records in other 
tables can be linked to a single record in this table. 
 
The Location ID in the “Relays” table matches the Location ID in the “Stations” table.  
The name of the substation can be changed one time in the “Stations” table and all linked 
records will be linked to the new name. 
 

 



Page 6 of 10 

The Relay ID and Communication ID link is a different story; there is not necessarily a 
direct one to one or one to many relationship.  Because it is possible to have more than 
one communication record associated with a Relay and also possible that not all devices 
in a station will use the same communications method, there must be an inter-posing 
table that defines the links between relays and their associated communications records.  
This link table is called “IED_Comm_links”.  Each record in this table consists of just 
two fields - the link to the “Relays” table and the link to the corresponding record in the 
“Communications” table. 
 
The fields that are common between tables that are used to link records from multiple 
tables are usually just a number.  One way to create these numbers is to have the field 
defined as an “AutoNumber” field.  The database program will automatically generate a 
unique number each time a record is created.  These fields’s data can usually be hidden 
from the person entering the data. 
 
This multi table relational database seems like a very good way to store the data, and it is.  
However, there are obstacles to using this method. You must have someone that knows 
about database design to build it, or become a database expert yourself.  It is also more 
difficult to find someone that can take over administration of the database should that 
become necessary.   It is a little more of a chore to get all the data into the database 
initially, as you must take care to ensure that the links are correct.  Once the database is 
set up, then maintenace of the data is much easier.  Changes to the tables do require more 
work in a multi-table database. 

Using the Data 

Reports 
The most common use of the data in a database is to run reports against it.  This is a very 
useful tool because you can get some very specific information.  For example, we have 
reports that specify transmission devices, distribution devices, devices that calculate fault 
location and send that data to the operating center, devices that calculate fault location 
and don’t send the data to the operating center, and many more. 

Scripting 
One of the most powerful functions of a modern database program is the ability to do 
scripting, or programmatic control of the database.  This has allowed us to easily 
maintain accurate phone files that are used directly by our communications program. 
 
The evolution of this process started out of a desire to automate creation of Relay Gold 
scripts that we used to communicate with sequence of event recorders.   We had a script 
for each recorder.  Each script was virtually identical except for the phone number.  This 
is when the automation began.  A simple Quickbasic program was written that 
automatically created the scripts while it read the phone numbers from a text file. We 
then created icons (in Windows 3.1) that launched the script.  Anyone could 
automatically download event data from SERs without having to know all the SER 
specific commands. 
 



Page 7 of 10 

From this “one script per device” philosophy came the idea to have a single script 
template for each device, and have a program manage the scripting.  This would reduce 
the need for many scripts and just create the one that is needed when it is needed. 
 
As previously stated, this started out with just sequence of events recorders.  When 
improvements were made to the SER script manager, there came a point that we realized 
that this method could work for any device that communicates via a terminal mode 
command line interface.  That included not only sequence of event recorders, but also 
many types of relays, RTUs, communications port switches, and also some substation 
PCs.  Once we realized the universality of this, we began the process of creating script 
templates for each type of device. 
 

A little background 
Most of the devices we communicate with have a command line interface, which means 
that we can use any terminal program.  Windows Terminal, HyperTerminal, Procomm, 
Relay Gold, and Qmodem Pro are all terminal programs that can communicate with these 
devices.  Many of these programs also support scripting.  We were able to utilize all these 
scripting abilities to our advantage.  We developed a program that writes a script file for 
the terminal program of our choice.  This script is based on a template that contains 
connection instructions for that particular type of device.  The template has a variable 
name in place of the phone number, so that when the “script organizer” program wrote 
out the communications script, the correct phone number was inserted.  Other variables 
were also included, such as passwords, port numbers, etc.  Once the communications 
script is written, then the communications program is opened; invoking the script. 
Once this system was in place, it then becomes a chore to maintain the phone numbers 
for the script organizer program.  This is where the database scripting is utilized.  The 
script organizer program stores data in a standard text file that has the structure of 
Windows .ini files.  Here is an example entry from a configuration file: 
[ACCA 1] 
Number=804-555-4575,,44,44,44,44 
Type=SEL-2020 
CallScriptTemplate=Q9600Sel.tpt 
OutputScript=Autocall.qsc 
WorkingDir=C:\Program Files\QmodemPro\Scripts 
CallAction=C:\Program Files\QmodemPro\qmwin.exe autocall.qsc 
Password=OTTER 
Autopoll Template=sel-2020.tpt 
Autopoll Commandline=c:\relay\relay.com autosel 
Poll=Y 
 
Since we store all of this information in a database, it seemed like a good idea to try 
automating the process of updating phone numbers.  Also, because the script organizer 
program uses plain text files, it seemed that it would be relatively easy to write that type 
of file. 
 
The database program that we use is Microsoft Access.  There are several other desktop 
database programs available that will perform these same functions.  Some others are 
Lotus Approach, Alpha 5, Filemaker Pro, and Paradox. 



Page 8 of 10 

 
We were able to write a script in Access, which uses Microsoft’s Visual Basic for 
Applications (VBA).  If you are familiar with Visual Basic, or even earlier forms of 
BASIC, you should be able to recognize the commands used in VBA. 
 
This script reads the data from the database and then writes it out in the format expected 
by the script organizer program.  The VBA program uses a For..Next loop to parse 
through each record and then write the data to the specified file. 
 
The code from the SEL-2020 export routine is shown in Appendix A. 
 
This routine can be modified to match the format needed for almost any program that 
uses plain text configuration files.  Binary files can also be written, it would just require a 
higher level of programming expertise.  This same method could also just as easily be 
used to write script files for the communications program.  For example, if you used 
Qmodem Pro, this routine could be modified to write the necessary data to a Qmodem 
script file that anyone could double click in Explorer and establish communications.  
Since the database program is writing the files, it’s no big deal to write several hundred 
files in a few seconds.  It is also much more likely that files will be kept up to date if it is 
very easy to do. 
 
The advantage to all of this is that the phone number can be updated in only one location 
- the database.  Then it is simply a matter of a few mouse clicks to have the data from the 
database in a format that is ready to be used to call an IED. 
 
Another approach, in addition to the desktop database application, is to have the database 
on a web server and configured as an intranet web application.  For most people this will 
require the help of a database expert from your IT department.  Some advantages of 
storing these data on the intranet are: 
-Better control of who can access the database 
-Data can be accessed from any PC on the network. 
-No special application required to be installed on the workstation. 
-Different levels of access can be assigned on an individual basis, i.e. some people would 
have read only access while only a select few have full read and write access. 
-Special scripting and reporting can be done from the web server, or a desktop database 
program like Microsoft Access can connect to the data on the server so that scripting and 
reporting can be accomplished locally without having your IT department write special 
routines. 

Conclusion 

Implementing a database to store and organize your IED communications information 
can make the job of communicating much easier and more efficient by having current 
data readily available.  The process of updating communications files directly can be 
automated by utilizing the scripting functions of the database program. 

 



Page 9 of 10 

References 
Microsoft Corporation “Microsoft Access Users Guide”, ©1994 Microsoft Corporation 
 
Alpha Software Corporation “Alpha Five for Windows Users Guide”, ©1994 Alpha 
Software Corporation 

Biography 

1.) Robert Orndorff works in the Fault Analysis group at Dominion Virginia Power and 
has held this position since November 1997. His responsibilities include: 
-Retrieve and analyze data from DFR's, SER's, "smart" relays, and other devices for the 
entire Dominion system. 
-Maintain, test and troubleshoot modem and network communications to substation 
devices 
-Test and implement new technologies, including substation automation 
-DFR Configuration and setup 
-Anything else he's asked to do... 
 
2) Robert previously worked as a field relay technician for 11 years. Responsibilities 
included installing, maintaining and testing of protective relay systems, SCADA, and 
power line carrier. 
 
3) AAS Degree in Electronics from J. Sargeant Reynolds Community College. Hobbies 
include Amateur radio and computer programming.



Page 10 of 10 

Appendix A – Sample Microsoft Access VBA Script 
Private Sub cmdExportPhone_Click() 
On Local Error Resume Next 
Dim A$, B$, X As Long, N As Long 
 
CMDialog1.Flags = cdlOFNHideReadOnly + cdlOFNOverwritePrompt 
CMDialog1.CancelError = True 
CMDialog1.ShowSave 
If Err.Number = 32755 Then 
    Exit Sub 
End If 
 
A$ = CMDialog1.FileName 
Dim MyDB As Database, MyRecordset As Recordset 
Set MyDB = DBEngine.Workspaces(0).Databases(0) 
Set MyRecordset = MyDB.OpenRecordset("SEL-2020", DB_OPEN_DYNASET) 
MyRecordset.MoveLast 
X = MyRecordset.RecordCount 
MyRecordset.MoveFirst 
Dim Poll As Boolean, Phone$, Telnet As Boolean 
 
Open A$ For Output As #1 
For N = 1 To X 
    Phone$ = "" 
    Poll = MyRecordset.Fields![In Service] 
    Phone$ = MyRecordset.Fields![Phone] 
    If InStr(1, Phone$, ".") Then 
        'It's a telnet address 
        Telnet = True 
        Poll = False 
    Else 
        Telnet = False 
    End If 
        B$ = MyRecordset.Fields![Station] 
        B$ = B$ + " " + MyRecordset.Fields![Unit] 
        If Telnet = True Then 
            B$ = B$ + " Telnet" 
        End If 
        Print #1, "[" + B$ + "]" 
        If Phone$ <> "" Then 
            B$ = Phone$ 
        Else 
            B$ = "None" 
        End If 
        Print #1, "Number=" + B$ 
        Print #1, "Type=SEL-2020" 
        If Telnet = False Then 
            Print #1, "CallScriptTemplate=Q9600Sel.tpt" 
        Else 
            Print #1, "CallScriptTemplate=QTelnet.tpt" 
        End If 
        Print #1, "OutputScript=Autocall.qsc" 
        Print #1, "WorkingDir=C:\Program Files\QmodemPro\Scripts" 
        Print #1, "CallAction=C:\Program Files\QmodemPro\qmwin.exe autocall.qsc" 
        Print #1, "Password=OTTER" 
        Print #1, "Autopoll Template=sel-2020.tpt" 
        Print #1, "Autopoll Commandline=c:\relay\relay.com autosel" 
        If Poll = True Then 
            Print #1, "Poll=Y" 
        Else 
            Print #1, "Poll=N" 
        End If 
        Print #1, 
    MyRecordset.MoveNext 
Next N 
Close #1 
MsgBox "Export Complete!", vbOKOnly + vbInformation 
End Sub 


