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Pictorial Illustration of Fourier Transform as Applied to Digital Fault Recorder 
By 

Wing-Kin Wai & Greg Bradley 
 
Abstract: 
 
The concept of Fourier Transform (FT) is buried under an abstract mathematical formula. 
As it applies to Digital Fault Recorder (DFR), its limitation as well as its usefulness is 
often misunderstood. This paper attempts to bring the concept to the forefront by means 
of pictorial illustrations of how FT is applied to sinusoidal data. Its practical application 
in DFR such as phasor measurement, harmonics, and inter-harmonics will be illustrated. 
 
Introduction: 
 
This paper attempts to make the abstract concept of FT more understandable. It have 
been the authors experience that many engineering students question what they actually 
learn after taking a class of FT. They know, after the class, that they can transform data 
from time to frequency and back using FT, and it is useful to work in the frequency 
domain since it can solve some problem easier than the time domain. But how does FT 
really works, and is it comprehensible? 
 
Vectors versus sinusoidal data: 
 
Before I jump into FT, I would like to talk about sinusoidal data which is what DFR 
records (see Figure-1). We know recorded power signals are sinusoidal. Sinusoidal data 
goes up and down. It is related to a rotating vector. 
 
 

 

 
Figure-1:  Recorded power signal is sinusoidal 

 
 
Figure-2 shows the relationship between vector and sinusoid. On the left, vector A is 
rotating counter-clockwise starting at t=0 at the x-axis. On the right, it shows what the 
amplitude of A is projected onto the y-axis and the x-axis. You can imagine that the 
rotating vector A is the motor and the sinusoidal signal at X and Y is electrical power 
going through the electrical wires. As you can see from Figure-2, at t=0, X is at its 
maximum and Y is zero. When A reach 90 degrees, Y is at its maximum and X is at zero. 
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And it goes on and on. And we call the signal at X cosine and at Y sine. That means we 
need two sinusoidal data at any instant in time to truly represent a rotating vector. 
 
 

 
Figure-2: Vector vs. sinusoid 

 
But recorded power signals have only one sinusoid. How can we use only one sinusoidal 
data to represent a rotating vector? We can if we assume the vector did not change its 
amplitude and speed in the time period of interest. Then we can shift back 90 degrees to 
get the sine (see Figure-3). Using this assumption, we can determine the phase of the 
rotating vector (or signal). This works, but is not accurate. Power signals have offsets and 
harmonics to alter the true amplitude of the signal at any instant of time. And this leads us 
to use FT for power signal analysis. 

 
 

 
 

Figure-3: Hidden vector in sinusoid 
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Applying FT to sinusoidal data: 
 
The basic assumption of FT: 

- The signal is periodical. 
- The signal can be expressed by the sum of sinusoids with different amplitudes and 

frequencies. 
 
Therefore, the requirement of a steady signal for the period of interest as we talked about 
in Figure-3 also applies to FT. The second assumption simply means FT is perfect for 
harmonic analysis. 
 
The basic formula of FT (see Equation-1) does not look like much but it encompasses a 
very abstract concept. It is the objective of this paper to illustrate the concept behind this 
formula in a more understandable manner. 

Equation-1:  F(ω) = ∫f(t) e-jωt dt   

 
For the power signal which is pre-dominated by sinusoids, we can re-write Equation-1 to 
a less abstract one (Equation-2). We are not going into detail how it is derived. For digital 
fault recorder, the data recorded is digitized and therefore discrete. We can rewrite 
Equation-2 to be discrete as shown in Equation-3 by simply changing the integral symbol 
with the summation symbol and dropping the dt. Since the continuous and discrete 
formulas are interchangeable (in all practical matters), for convenience, we will use 
mostly the continuous one in this paper. Also notice the power signal function f(t) is the 
sum of signals with different frequencies.  
 
Continuous: 

Equation-2:  F(ωk) = 2∫f(t) cos(ωkt) dt – 2 j∫f(t) sin(ωkt) dt    

Discrete: 

Equation-3: F(ωk) = 2 ∑ f(t) cos(ωkt) – 2 j ∑ f(t) sin(ωkt)  

where f(t)=∑ f(ωit) is recorded power signal. 
 
The FT can be made easier to understand if we can replace it with vectors. 
 
Let u = u(ωkt) = cos(ωkt) – j sin(ωkt) and Ai = f(ωit), we can rewrite Equation-2 as 
Equation-4 and Equation-5. 

Equation-4:  F (ωk) = 2 ∫∑f(ωit) u(ωkt) dt = ∑Fi (ωk)   

where 

Equation-5:  Fi (ωk) = 2∫f(ωit) u(ωkt) dt =  2∫Ai u dt   
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u is a unity vector with an amplitude equal to one. Ai is not a vector but if we simply 
relate it to a vector, we will see later in this paper that it will make FT easier to remember 
and understand. 
 
Let f(ωit) = A cos(ωit+φ) and Fi(ωk) = Fc + Fs and substitute them into Equation-5. We 
get Fc in Equation-6 and Fs in Equation-7. They are the cosine and sine parts of FT. 

Equation-6:  Fc =  2∫A cos(ωit+φ) cos(ωkt)dt   

Equation-7:  Fs = -2j∫A cos(ωit+φ) sin(ωkt)dt   

 
Fi(ωk=ωi=ω): 
 
Now we want to see what happen if ωk=ωi=ω.  
 
Let θ=ωt, we get the following Fc and Fs.  

Equation-8:  Fc =  2∫2π   A cos(θ+φ)  cos(θ) dθ = 2πA cos(φ)   

Equation-9:  Fs = -2j∫2π   A cos(θ+φ) sin(θ) dθ = -j 2πA sin(φ)   

 
Integrate Fc and Fs over the period of 2π. We get the form (Equation-10) many of us will 
be familiar with. It is just a vector with angle φ multiplied by 2π. 
 
Equation-10:  Fi(ω) = 2πA[ cos(φ) + j sin(φ) ] = 2π A∠φ   

 
If we let n = number of samples = 2π, then Fi(ω) = n A where A is the vector. If we try to 
picture it, we can see that A is related to u with a fixed angle φ (see Figure-4). This is 
how a phase angle of a power signal is being calculated in DFR.  
 
 

 
 

Figure-4: Fi(ωk= ωp = ω) shows as vectors 
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Fi(ωk≠ ωi): 
 
But what happen if ωk≠ ωi?  
 
Let θ = ω0t, ωkt = kθ and ωit = mθ, where m is integer. And for simplicity, let φ=0. Then 
we get the cosine and sine of FT as show in Equation-11 and Equation-12. 

Equation-11:  Fc = 2∫2π A cos(mθ) cos(kθ) dθ   

Equation-12:  Fs = -j2∫2π A cos(mθ) sin(kθ) dθ   

 
We know  
cos(A)cos(B) =  ½ ( cos(A+B) + cos(A-B) ), 
sin(A)sin(B) =  ½ ( sin(A+B) + sin(A-B) ), and  
let a=m+k and b=m-k. We get  

Equation-13:  Fc = A∫2π  cos(aθ) + cos(bθ) dθ = 0    

Equation-14:  Fs = -jA∫2π  sin(aθ) - sin(bθ) dθ = 0   

 
Then we integrate Fc and Fs over the period of 2π. We get Fc=0 and Fs=0.  
 
Therefore,  
Equation-15:  Fi(ωk≠ ωp) = 0   

 
If we try to picture what the vectors look like if the frequencies are different, we will find 
that it looks like the vectors show in Figure-5. Let the vector A fixed. We will see the 
vector u is simply rotating around vector A. Integrating the rotation cancels out the effect. 
Therefore, we get Fi equals zero.  
 

 
 

Figure-5: Fi (ωk≠ωi)=0 
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Therefore, we come to the following conclusion.  
 
We know  

Equation-16:  F(ωk)  =  Fi(ωk= ωi)  +  ∑Fj(ωk≠ ωj )  

 
Since Fi(ωk= ωi) = 2πA∠φ and Fj(ωk≠ ωj) = 0, we got  
 
Equation-17:  F(ωk)  = Fi (ωk= ωi) = n A∠φ  

 
Therefore, we can conclude that Fourier transforming a signal with frequency k is the 
same as extracting the sub-signal with frequency k from the signal. In other words, 
Fourier Transforming a signal with frequency k is the k-harmonic. 
 
 
Harmonics (f0=60Hz): 
 
If we assume a fundamental frequency of 60Hz, then the Fourier Transform of 60Hz is 
simply equal to n times vector A1 which is the fundamental vector and doing that on 
120Hz is the 2nd Harmonic vector, and 180Hz is the 3rd Harmonics vector and so on. 
 
 
F(60Hz) = fundamental = nA1∠φ1 
F(120Hz) = 2nd Harmonic = nA2∠φ2 
F(180Hz) = 3rd Harmonic = nA3∠φ3 
… 
 
 
Inter-harmonics (f0=60Hz): 
 
We talked about Harmonics above. Now you might ask what about inter-harmonics? If 
we assume 60Hz is the fundamental frequency, then an example of inter-harmonic is 
61Hz, since it is not the integer multiple of 60. If we want to compare F(60Hz) with 
F(61Hz), we will need a resolution of 1Hz. In other words, the period of the integration 
needs to be 1 second. This might be a surprise to some that to find inter-harmonics, we 
need a longer period instead of a higher sampling rate. In theory, the real fundamental 
frequency in this case is 1Hz instead of 60Hz. 
 
 
F(61Hz) is inter-harmonics 
 
T needs to be at least 1/1Hz = 1 second, 
 
since the resolution needed is 1Hz 
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FT Strengths 

• Takes off offset naturally 
• Cancels out other frequency naturally 

FT Limitations 
• Only for periodic signals 
• Any frequency not the integer multiple of the lowest frequency defined by the 

window cannot be represented accurately 
 
 
Practical Examples: 
 
Now I will show some examples related to digital fault recorder. In general, in discrete 
Fourier Transforming a power signal, we are looking for harmonic contents of the signal 
as show in the bar graph in Figure-6. The bottom graph with a single spike is a Fast 
Fourier Transform (FFT) curve. At first sight, the FFT result is really showing us nothing. 
 
 
 

 
Figure-6: Harmonic versus FFT 

 
 
 
But zooming into the FFT (see Figure-7), we see something resembled to the harmonic 
bar graph. There are spikes of 3rd, 5th, 7th and 9th harmonic. Although there is no inter-
harmonic in this signal, we can clearly see that FFT will show inter-harmonics if it 
happens to be in the signal. We are not going into detail of FFT, but we simply point out 
that FFT is equivalent to DFT but can be processed much faster. But DFT is much 
simpler and targets particular frequency more directly and uses much less memory which 
is very crucial when applying to digital signal processor (DSP) or micro-controller. 
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Figure-7: Zoom-In FFT 

 
 
Another example of the application of Fourier Transform is the phasor measurement. The 
phasors are calculated using FT in the period between the solid line and the dot-dot line 
in Figure-8. 
 
Figure-9 shows the same data but the period of calculation is right inside the fault. We 
can see current vector diagram indicating a large current flow and about 45 degrees shift 
in the phase. 
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Figure-8: Phasor diagram versus sinusoidal data 

 
 
 

 
Figure-9: Phasor during a fault 
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Conclusions: 
 

• Fourier Transform can be presented in vector format for easier comprehension 
• Fourier transforming a signal with the same frequency as the transformation 

produces a vector 
• Fourier transforming a signal with a different frequency as the transformation 

produces zero 
• The resolution of the frequency in Fourier Transform is the fundamental 

frequency 
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