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Introduction 
Utilities are unnecessarily limited by their ability (1) to explore and quickly test hypotheses about data and then (2) 
to move analytic use cases from prototypes to production in operational systems. This arises because utilities are 
slow to traverse the analytics pipeline. The analytics pipeline not only supports the implementation of applications 
for previously identified use cases, but also enables the discovery of new use cases through exploration of the 
available measurement data. Utilities are tied to legacy platforms, ill equipped for analytics or the traversal of the 
analytics pipeline, and need the right tools to process and analyze time series sensor data at scale.  
 

 
Figure 1 – Analytics Pipeline 

 
The analytics pipeline (Figure 1) captures a process to realize value from data by the development of analytic use 
cases.  Each element of the pipeline is hampered by traditional utility data systems.  For example, even if the data is 
captured (Step 0) from the device, access (Step 1) may be limited to very few people or measurements due to storage 
space or limited network bandwidth.  Even data transferred and stored must be verified (Step 3) before analysis is 
performed, because bad data will yield bad information.  Once the data is cleaned, it can finally be used for 
exploratory research and analysis (Step 4).  If the results are conclusive, then reporting and visualization take place 
manually (Step 5) and often with desktop-based tools like MATLAB or Excel.  Taking these prototype results and 
migrating them back to production is nearly impossible (Step 6).  In some cases, production rollout of an analytic 
either never occurs or requires significant development effort. 
 
Next generation sensors are being deployed across the grid at an increasing rate and sensors already embedded in 
smart assets lay dormant and only require software activation.  Still, utility data systems are unable to handle the 
deluge of data.  Moreover, even if such legacy platforms could handle the quantities of data, there are few systems 
that can make the data available for advanced analytical techniques like machine learning and artificial 
intelligence.  Without known use cases and applications with previously identified return on investment (ROI), 
utilities are unlikely to adopt modern computational paradigms even though the most capital-intensive part of 
data acquisition—sensor deployment—has already been completed. Thus, the industry faces the classic chicken 
and egg scenario; which came first, the data platform or the application? 
 
To encourage the utility industry to adopt these techniques, the Department of Energy’s Advanced Research 
Projects Agency (ARPA-E) funded the National Infrastructure for Artificial Intelligence on the Grid.  The NI4AI has a 
3-fold mission: 1) provide open access to a platform architected to make working with time series data at scale 
easy, 2) collect and host a variety of open sensor data sets to support research, education, and industry 
applications for sensor data, and finally 3) to build a community around this ecosystem.   
 
The Problem 
Surveying the utility landscape, we see an ever-present chasm in the grid analytics space. This gap prevents ideas 
and hypotheses about how data from grid sensors can create value from being fully developed as prototype use 
cases and then deployed into production.  Currently, at best, these ideas get implemented in MATLAB and run on a 
laptop, with results potentially presented at conferences or published in journals. However, even successful 
prototypes that enhance the grid’s stability, resiliency, and/or reliability can take years to be operationally deployed 
if they ever make it to the production environment.  



 
The slow pace of analytic use case development has allowed high-value data to languish unused at utilities and even 
to be deleted due to storage space and dated software cost models. This limited use of sensor data inhibits the 
utility's ability to push the boundaries of their technical capabilities and gain greater insight into the real-time 
operation of their networks. For example, phasor measurement capabilities are built into many smart assets such as 
modern smart relays, consequently, the number of PMUs connected to the grid is already in the hundreds of 
thousands [i]. Many transmission utilities have dozens, hundreds, or even thousands of PMUs deployed but inactive, 
lacking the capabilities to leverage the vast data volumes that these sensors generate when operational.  
 
Consider the measurements from a single PMU which could be used to detect voltage sags on a system.  
Synchrophasor data is perfect for advanced analytics because its intrinsically high sample rate--30 Hz or greater--
allows observation of short-duration, sub-second events that span only a few cycles. However, scanning a year of 
just a single voltage phasor magnitude signal at 120 Hz requires the processing of 3,784,320,000 data points or 
approximately 60GB of time series data.  Most analytic tools in the utilities’ toolbox are ill-equipped to handle this 
quantity of data. 
 
Approach 
It is possible to develop and deploy an analytic for grid sensor data in days rather than months or years by walking 
through the steps taken to achieve these results. The key to such speed is the use of an open, state-of-the-art 
platform to ingest, store, clean, visualize, and process time series data from such grid sensors such as PMUs, digital 
fault recorders, point on wave sensors, smart meters, and power quality meters. This universal sensor analytics 
platform was designed with a deep understanding of the analytics pipeline to allow utilities and other organizations 
to traverse it at warp speed.  The platform allows authorized utility users to easily access data and enables artificial 
intelligence and analytics as core components of the platform (instead of bolted on additions), making available best 
of breed open source data visualization, analysis, and machine learning software libraries. The paper, A Universal 
Platform for Utility Sensor Data Analytics and Artificial Intelligence, details this universal sensor analytics platform, 
describing the underlying technologies and innovations that enable such capabilities [ii]. 
 
Even with a platform in place, the process of exploring, prototyping, deploying, and operationalizing new analytics 
for utility data is slow. In the interest of catalyzing this process, ARPA-E funded a multi-year project called the 
National Infrastructure for Artificial Intelligence on the Grid (NI4AI). The project is designed to eliminate barriers to 
accessing and analyzing grid data by providing widespread access to real-world sensor data and to state-of-the-art 
data analysis tools.  As shown in figure 2, below, the project has a 3-fold mission:  provide open access to a cloud-
based platform, host a variety of open data sets that can meet the needs of researchers, educators, and industry, 
and build a community to facilitate collaborations across institutions and among researchers, students, and 
practitioners using the data and platform to explore new opportunities for extracting value from grid sensor data. 
 

 



Figure 2 – NI4AI Mission 

 
In phase one, the NI4AI project provided open access to a high-performance platform to host sensor data of all 
kinds.  This type of platform is critical, because as new sensors are deployed on the utility infrastructure, it will be 
necessary to ingest data from a variety of sensor networks.  The ability to synthesize data across multiple and 
disparate sensor networks is essential to making better decisions.  The open platform enables collaboration across 
institutions and reduce the time required for data contributors or commercial partners to request, vet, and deploy 
new analytics from users. 
 
In phase two, the NI4AI project is deploying sensors to generate data that is openly accessible through the 
platform. This data set captures a variety of different grid dynamics, including continuous wide-area monitoring 
data (like PMUs), and boutique data sets targeting local dynamics of interest such as Power Quality or Protection.  
The sensors will stream data into the platform, providing open access to data which users (e.g., researchers, 
students, vendors, or practitioners) may leverage in their own work. Stakeholders who are generating data 
themselves (e.g., utilities, hardware providers, etc.) may also contribute anonymized data for analysts to study use 
cases of particular interest to them, and to deploy solutions developed via the platform. 
 
Finally, the project fosters collaboration between different types of users across different institutions including 
researchers, students, and industry.  By providing open data and challenging users to use it in answering questions 
that stakeholders have, the project aims to remove any and all obstacles to the rapid prototyping, deployment, 
and adoption of new use cases for data analytics, machine learning, and artificial intelligence.  Competitions will be 
hosted to allow analysts to showcase their ideas.  Results will be shared at conferences.  Finally, an online 
community will be developed to share and promote ideas developed using the platform. 
 
The result of this investment is to provide widespread access to an ecosystem for quickly exploring, prototyping, 
and deploying new analytics that will allow the industry to extract more value from time series data.  The NI4AI 
ecosystem is supported by the PredictiveGrid™  Platform shown in Figure 3.  The platform uses an innovative 
database architecture custom-built to streamline workflows for interacting with long time histories of high-
frequency and high-density sensor data. The platform offers faster-than-real-time visualization and analysis of 
large data archives, reducing time and effort it takes for users in any area of expertise – including data analysts, 
engineers, and grid operators – to explore ideas for translating data into actionable information as problems or 
questions come up on the job. 
 

 



Figure 3 –PredictiveGrid ™ System Diagram 

 
 
Example – Voltage Sag Identification 
Analytic development often begins with data 
exploration, a step whose value is difficult to 
overemphasize, especially when the user is 
unfamiliar with the measurement data or the 
phenomenon of interest. Pervasive sensor 
data, especially continuous, high frequency 
measurements of the electric grid, is relatively 
new, and some sensors, such as distribution 
synchrophasors (μPMUs), are novel. Many 
utilities and academic researchers are 
unfamiliar with the sensor measurements or 
only have experience with simulated versions 
different from real data. For example, there is 
some uncertainty about the meaning of μPMU 
measurements [iii]. During transient events 
such as faults or when the system frequency is 
not constant, the voltage and current do not 
follow the perfect sinusoidal model--with a 
60Hz frequency and fixed amplitude and 
phase. However, the PMU always outputs a 
magnitude and angle measurement that 
implicitly assumes a perfect sinusoid. 
Therefore, the physical interpretation of the 
returned magnitude and angle measurements 
can be ambiguous.   Voltage sags have a very 
distinctive appearance in PMU voltage 
magnitude measurements. However, users 
familiar with point-on-wave or lower 
resolution measurements may not 
immediately recognize the right metric to 
isolate these events in PMU magnitude data. 
Therefore, exploring the data and gaining 
familiarity with these novel data sets is a vital 
first step in developing new applications. 
 



The NI4AI enables exploration of high volume, high resolution, multi-modal grid sensor data via rapid data access 
and interactive, multi-stream visualization across time scales [iv]. Given this capability, voltage sags can be identified 
at the lowest temporal resolution, where months or years of data are visible (top panel, Figure 4). The visualization 
not only shows the average value for the time period represented by a single pixel column but also shows the 
minimum and maximum values as a shaded region. Thus, even at this resolution, voltage decreases are visible as 
fine spikes. Traversing the panels in Figure 4 from top to bottom, each shows an increased level of “zoom” or finer 
temporal resolution and required a separate query of the platform. Each query completed in less than 200 
milliseconds making truly interactive data exploration possible [v]. With the platform, the user can select an area of 
interest, shown in red, and smoothly zoom in to resolve individual 120Hz measurements. At this level of zoom, the 
exact shape of the transient voltage decrease is evident. After examining numerous such events, the user is armed 
with intuition for what makes these events unique and can start to prototype a potential detection approach.   
 
The general approach to voltage sag detection is to compute a metric on a window of data that indicates the 
presence of a voltage sag. Based on the data exploration step, the voltage sag’s shape suggests several potential 
metrics. The first possibility, Voltage Sag Metric 1 or VSM-1, finds the minimum value within the signal segment and 
computes the differences between this minimum value and the measurements shortly preceding and following it 
(both differences are expected to be large). The second possibility, VSM-2, calculates the difference between the 
window’s mean and minimum (expected to be large) and the difference between the window’s maximum and mean 
(expected to be small). Metric two ensures that the voltage sag consists of a narrow spike that drops significantly 
below an otherwise predominantly flat signal.  
 

 
Figure 5 - A sample input cell from a Jupyter Notebook, written in Python, showing the code that implements the first Voltage 
Sag Metric. Output from this code would be displayed immediately below the cell in the same document, enabling a literate 

programming style. 

Using the Python API, test segments of data that include voltage drops as well as other notable changes that are 
not voltage drops found via data exploration are pulled into the Jupyter Notebook. Next, the two proposed voltage 
sag metrics are computed over the samples to get a sense of their efficacy. The implementation of the first metric 
in the notebook is shown in Figure 5. Each proposed metric consists of two values and can be quickly evaluated 
using a scatter plot Figure 6. This preliminary result suggests that both metrics are effective for detecting voltage 
sags.  

 

Figure 4 – Panels (a) – (f) show plots of an event in interest, 
highlighted by a red box, at increasing temporal resolutions. Each 
query requesting PMU data from the platform took less than 250 

milliseconds to complete, allowing for interactive data 
exploration. 



 
Figure 6 - Scatter plots demonstrating the effectiveness of both voltage sag metrics. The (x,y) pair capture the computed values 
for each voltage sag metric with the blue dots representing visually confirmed voltage sags and the red dots representing data 

from other periods of time without voltage sags. 

After verifying the promise of the two approaches on a few samples, the speed of the platform enables testing over 
a much larger data set before being deployed to production. VSM-1 requires scanning through all of the data, 
querying the database for full resolution measurements (120Hz). Implementing this is as simple as putting our scripts 
from the exploratory phase into a for loop. Over one day of voltage magnitude measurements, the first approach 
runs in 23 minutes or 63x real time. The algorithm detected six suspected voltage sags.  
 
Metric two can be similarly implemented by querying the data at full resolution within a for loop. However, the 
formulation of the metric allows us to leverage an important aspect of the platform to achieve even faster 
performance. In addition to raw values, the universal sensor platform stores summary statistics at the internal nodes 
of its tree structure. At a particular internal node, the summary statistics consist of the mean, minimum, and 
maximum over all values “below” that node. These summary statistics can be queried more rapidly than the raw 
values. Since metric two is defined only in terms of the mean, minimum, and maximum over a window, we can 
compute it by querying the summary statistics for the window. Over the same day of voltage magnitude 
measurements, the approach runs in 1.28 seconds or 67750x real time. This algorithm detected the same six 
suspected voltage sags as VSM-1.  
 
In this test case, the two approaches have dramatically different runtimes but detect the same events. This may not 
always be the case and using summary statistics inherently limits the range of analytics possible compared to using 
the raw, full resolution data. However, as this example demonstrates, the power of the platform is that both 
approaches can be prototyped and tested rapidly so the appropriate tradeoffs between speed and accuracy can be 
chosen.  
 



 
Figure 7 - Visualization showing the actual phasor magnitude data for each detected voltage sag. 

Based on the visualization in Figure 6, the detected voltage sags are indeed real voltage sags with a distinctive and 
consistent shape, validating this metric for a larger sample of data. Additional analyses can be easily visualized to 
offer more insights into the voltage sags and the event detection approach. A heat map (Figure 8) indicates the 
sensor locations where voltage sags occur over a month and a histogram (Figure 9) demonstrates the size 
distribution of the sags. From the heatmap, we see that sensor 1 captures many voltage sags throughout the first 
part of the month. This may indicate the presence of a periodic load near that particular PMU which becomes 
inactive during the second part of the month.  
 

 
Figure 8 - Histogram of the number of detected voltage sags per day per sensor to give a larger view of total system behavior 

over time. 

 



 
Figure 9 - A histogram showing the distribution of voltage sags detected for all available data. 

 
 
 
Conclusion 
Utilities are dramatically limited in their ability both to test hypotheses and use cases leveraging data and to move 
prototype analytics into full deployment in production systems. To show that the status quo is not some fundamental 
limitation, this paper demonstrates not only the rapid development of a use case of interest using high density PMU 
data but also the deployment of this use case to a production big data system with operational data. This rapid 
traversal of the analytics pipeline was made possible through the use of the NI4AI.  
 
To learn more, visit the National Infrastructure for Artificial Intelligence website https://ni4ai.org/ . 
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