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SUMMARY 
 
Utilities are unnecessarily limited by their ability to explore and quickly test hypotheses about 
data and then to move analytic use cases from prototypes to production in operational systems. 
This arises because utilities are very slow to traverse the analytics pipeline. The analytics 
pipeline not only supports the implementation of applications for previously identified use 
cases, but also enables the discovery of new use cases through exploration of the available 
measurement data. The reasons for utilities’ sluggishness in traversing the pipeline were 
highlighted extensively in last year’s Learning from Data Grid of the Future paper [1]. 
Fundamentally, utilities are tied to legacy platforms, ill equipped for analytics, and need the 
right tools to process and analyze time series sensor data at scale.  
 
In this paper, we present an alternative vision by demonstrating the rapid development and 
deployment of an analytic use case enabled by a universal sensor analytics platform. Voltage 
sag detection was chosen as the example use case as it is useful to utilities, visually compelling, 
and highlights many of the important features of the analytics platform. Crucially, while the 
voltage sag detection described in this paper is not novel in itself, it was completed, from 
prototype to production, in approximately one work week. This is dramatically less time than 
is currently possible in the industry. Such short development times afford utilities numerous 
benefits including the ability to develop and deploy many novel analytics, to test multiple 
approaches for accomplishing certain analytic goals, to conduct sandbox testing without 
committing enormous amounts of time, and even to tailor analytics to the requests of operators 
in real time.    
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1. INTRODUCTION 
 
1.1 The Problem 
Surveying the utility landscape, we see an ever-present chasm in the grid analytics space. This gap 
prevents utility engineers’ and researchers’ ideas and hypotheses about how data from PMUs and other 
sensors can create value from being fully developed as prototype use cases and then deployed into 
production.  Currently, at best, these ideas get implemented in MATLAB and run on a laptop, with 
results potentially presented at conferences or published in journals. However, even successful 
prototypes that enhance the grid’s stability, resiliency, and/or reliability can take years to be 
operationally deployed if they even make it to the production environment.  
 
The development of oscillation detection, a wide area monitoring use case for synchrophasors, is a great 
example of this problem. In 2003, PSERC developed a project on real-time oscillation monitoring.  In a 
2008 report to NASPI [2], the project team reported that a prototype of the algorithm had been installed 
at Entergy and TVA in 2006. It took nearly three years to get to a prototype implementation and another 
two years to deploy the prototype into a production PDC for a total of five years from prototype to 
production.  
 
The slow pace of analytic use case development has allowed high-value data to languish unused at 
utilities and even to be deleted due to storage space and dated software cost models. This limited use of 
sensor data inhibits the utility's ability to push the boundaries of their technical capabilities and gain 
greater insight into the real-time operation of their networks. As phasor measurement capabilities are 
built into many smart assets such as modern smart relays, the number of PMUs connected to the grid is 
already in the hundreds of thousands [3]. Many transmission utilities have dozens, hundreds, or even 
thousands of PMUs deployed but inactive, lacking the capabilities to leverage the vast data volumes that 
these sensors generate when operational.  
 
By keeping the PMU capabilities disabled, utilities forsake a massive load of geographically extensive, 
time synchronized, high resolution information about their networks. Many applications of sensor data 
become increasingly accurate with increased network coverage and some are only feasible when 
measurement coverage exceeds a minimum threshold. Therefore, artificially restricting the number of 
sensor data streams used because of legacy platform limitations not only discards measurements from 
certain sensors, but also reduces the value and power of the measurements that are collected.  
 
The high investment of time required to deploy new analytics means that utilities cannot quickly 
compare several approaches to a particular use case to determine which performs best. This widens the 
chasm further, especially for analytic use cases where a vast number of new techniques, tested in 
simulation alone, are proposed each year, such as fault identification and localization [4, 5, 6]. Rather than 
being an asset, the vast literature of algorithmic options is a daunting prospect, since comparing several 
techniques is essentially infeasible, and selecting any one seems risky.  
 
1.2 Analytics Pipeline Review 
The analytics pipeline (Figure 1) is a general sequence of steps to realize value from data that applies to 
the development of analytic use cases not just in utilities but also in many other data intensive industries 
and research areas including finance, healthcare, medical imaging and diagnostics [7], astronomy, and 
the broader energy sector.  
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Figure 1 - The Analytics Pipeline - a general set of steps for realizing value from data and creating new analytic use cases. 

Notice that the “Analysis and Modeling Stage,” focusing on the development and refinement of the use 
case, is highly iterative in nature. This is not to say that no other feedback loops exist within this process 
but rather that this one is especially important for use case development.  
 
The 2017 Grid of the Future paper, Learning from Data: Fixing the Analytics Pipeline to Increase the 
Rate of Grid Evolution, detailed both how and why each stage of this process is unnecessarily hampered 
by numerous factors. Ideas and hypotheses about how data could be useful are realized via the traversal 
of the analytics pipeline with the last stage seeing the ideas operationalized inside the utility. Potential 
new use cases fall short of production deployments in two general ways. 
 

1. Some use cases never get fully realized because traversing stages 0 through 5, from data capture 
to visualization, reporting and propagation of analytic results, is both time and resource 
intensive for numerous reasons, detailed previously [1].  

2. The use cases that successfully refined to a production-ready state still face a chasm 
transitioning from prototypes into production for everyday use within utilities.  

 
This paper demonstrates that it is possible to develop and deploy an analytic for grid sensor data in days 
rather than months or years by walking through the steps taken to achieve these results. The key to such 
speed is the use of an open, state-of-the-art platform to ingest, store, clean, visualize, and process data 
from such grid sensors such as PMUs, digital fault recorders, point on wave sensors, smart meters, and 
power quality meters. This universal sensor analytics platform was designed with a deep understanding 
of the analytics pipeline to allow utilities and other organizations to traverse it at warp speed.  The 
platform allows authorized utility users to easily access data and enables artificial intelligence and 
analytics as core components of the platform (instead of bolted on additions), making available best of 
breed open source data visualization, analysis, and machine learning software libraries. The paper, A 
Universal Platform for Utility Sensor Data Analytics and Artificial Intelligence, details this universal 
sensor analytics platform, describing the underlying technologies and innovations that enable such 
capabilities [8]. 
 
1.3 Example Analytic: Identification of Voltage Sags 
Detecting voltage sags is a very specific type of univariate event detection of interest to both 
transmission and distribution utilities. In a voltage sag, the voltage temporarily decreases and then 
returns to the approximately original value over a specified, brief period of time. The causes of voltage 
sags in both transmission and distribution networks are varied and include switching operations, faults, 
and inrush currents. Voltage sags can cause sensitive loads, especially those of industrial customers, to 
drop offline [9, 10]. Quantifying the number and size of voltage sags in historical data is therefore a useful 
method to assess the health of utility systems. An excessive number of voltage sags can indicate 
underlying issues in equipment or control processes and may necessitate corrective actions.  
 
We develop an analytic to detect transient decreases in voltage magnitude measurements from 
synchrophasor sensors. To detect the voltage decreases, we want to scan every voltage phasor magnitude 
measurement and identify each voltage sag, the timestamp when occurred, and quantify its percentage 
size. Synchrophasor data is perfect for this application because its intrinsically high sample rate--30 Hz 
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or greater--allows observation of short-duration, sub-second events that span only a few cycles. 
However, scanning a year of just a single voltage phasor magnitude signal at 120 Hz requires the 
processing of 3,784,320,000 data points or approximately 60GB of time series data.  
 
The development of such an analytic follows a sequential yet iterative process, starting with exploration 
and ending with an analytic ready for production. Ideally, the engineer or analyst first explores the 
operational data visually to get a better “sense” or “feel” of the data, randomly sampling voltage phasor 
magnitudes, searching for voltage sags to collect examples of the phenomenon to develop initial 
concepts for the detector. The next step is the development of different approaches to identifying such 
events and then test each on subsets data. With a promising approach identified, larger scale testing is 
required. Key to this step is the visualization of the algorithm’s performance so that the effectiveness of 
the prototype can be determined and then demonstrated to an audience. Finally, if requirements have 
been met the approach can be deployed to production to become available to all users of the system or 
the prototype algorithms can be refined and re-tested.  
 
 
2. ANALYTICS AT WARP SPEED 
 
To accelerate analytics, the early stages of the analytics pipeline are handled by the universal sensor 
analytics platform and require little additional effort on the part of the user.  The data capture of stage 0 
can be verified simply through the rapid visualization of the data in the multi-resolution plotter. Stages 
1 and 2—access and acquisition—are also handled by the database and its API. The database allows 
data to be either manually downloaded using the plotter interface or to be programmatically queried via 
the API, both orders of magnitude faster than legacy historians. In addition, the density of available data 
points per data stream can be viewed in the top segment of the plot (see top of Figure 2). This 
visualization partly addresses stage 3 of the analytics pipeline: data wrangling and cleaning. Using the 
density information, it is possible to easily identify a time span over which the data of interest is available 
without missing or repeated values--both of which are common problems when working with grid sensor 
data. 
 
2.1 Data Exploration  
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Analytic development often begins with 
data exploration, a step whose value is 
difficult to overemphasize, especially 
when the user is unfamiliar with the 
measurement data or the phenomenon of 
interest. Pervasive sensor data, especially 
continuous, high frequency measurements 
of the electric grid, is relatively new, and 
some sensors, such as distribution 
synchrophasors (μPMUs), are novel. 
Many utilities and academic researchers 
are unfamiliar with the sensor 
measurements or only have experience 
with simulated versions different from 
real data. For example, there is some 
uncertainty about the meaning of μPMU 
measurements [11]. During transient events 
such as faults or when the system 
frequency is not constant, the voltage and 
current do not follow the perfect 
sinusoidal model--with a 60Hz frequency 
and fixed amplitude and phase. However, 
the PMU always outputs a magnitude and 
angle measurement that implicitly 
assumes this perfect model. Therefore, the 
physical interpretation of the returned 
magnitude and angle measurements can 
be ambiguous.   Voltage sags have a very 
distinctive appearance in PMU voltage 
magnitude measurements. However, users 
familiar with point-on-wave or lower 
resolution measurements may not 
immediately recognize the right metric to 
isolate these events in PMU magnitude 
data. Therefore, exploring the data and 
gaining familiarity with these novel data 
sets is a vital first step in developing new 
applications. 
 
The universal sensor analytics platform 
enables exploration of high volume, high 
resolution, multi-modal grid sensor data 
via rapid data access and interactive, 
multi-stream visualization across time 
scales [12]. Given this capability, voltage 
sags can be identified at the lowest 
temporal resolution, where months or 
years of data are visible (top panel, Figure 
2). The visualization not only shows the 
average value for the time period 
represented by a single pixel column but 
also shows the minimum and maximum 
values as a shaded region. Thus, even at 
this resolution, voltage decreases are 
visible as fine spikes. Traversing the 
panels in the Figure 2 from top to bottom, 
each shows an increased level of “zoom” 

Figure 2 – Panels (a) – (f) show plots of an event in interest, highlighted 
by a red box, at increasing temporal resolutions. Each query requesting 

PMU data from the platform took less than 250 milliseconds to complete, 
allowing for interactive data exploration. 
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or finer temporal resolution and required a separate query of the platform. Each query completed in less 
than 200 milliseconds making truly interactive data exploration possible [13]. With the platform, the user 
can select an area of interest, shown in red, and smoothly zoom in to resolve individual 120Hz 
measurements. At this level of zoom, the exact shape of the transient voltage decrease is evident. After 
examining numerous such events, the user is armed with intuition for what makes these events unique 
and can start to prototype a potential detection approach.   
 
2.2 Rapid Prototyping 
To quickly prototype this idea, Jupyter Notebook and the Python API are used. Jupyter Notebooks 
contain both computer code (e.g. python, R, MATLAB, or other languages) and rich text elements such 
as text paragraphs, equations, figures, URL hyperlinks, and even dynamic, interactive visualizations. 
Therefore, notebooks are human-readable and executable including both the scripts used to perform data 
analysis as well as the results (figures, tables, etc.) and documentation text [14]. 
 
The general approach to voltage sag detection is to compute a metric on a window of data that indicates 
the presence of a voltage sag. Based on the data exploration step, the voltage sag’s shape suggests several 
potential metrics. The first possibility, Voltage Sag Metric 1 or VSM-1, finds the minimum value within 
the signal segment and computes the differences between this minimum value and the measurements 
shortly preceding and following it (both differences are expected to be large). The second possibility, 
VSM-2, calculates the difference between the window’s mean and minimum (expected to be large) and 
the difference between the window’s maximum and mean (expected to be small). Metric two ensures 
that the voltage sag consists of a narrow spike that drops significantly below an otherwise predominantly 
flat signal.  
 

 
Figure 3 - A sample input cell from a Jupyter Notebook, written in Python, showing the code that implements the first 

Voltage Sag Metric. Output from this code would be displayed immediately below the cell in the same document, enabling a 
literate programming style. 

Using the Python API, test segments of data that include voltage drops as well as other notable 
changes that are not voltage drops found via data exploration are pulled into the Jupyter Notebook. 
Next, the two proposed voltage sag metrics are computed over the samples to get a sense of their 
efficacy. The implementation of the first metric in the notebook is shown in Figure 3. Each proposed 
metric consists of two values and can be quickly evaluated using a scatter plot Figure 4. This 
preliminary result suggests that both metrics are effective for detecting voltage sags.  
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Figure 4 - Scatter plots demonstrating the effectiveness of both voltage sag metrics. The (x,y) pair capture the computed 

values for each voltage sag metric with the blue dots representing visually confirmed voltage sags and the red dots 
representing data from other periods of time without voltage sags. 

After verifying the promise of the two approaches on a few samples, the speed of the platform enables 
testing over a much larger data set before being deployed to production. VSM-1 requires scanning 
through all of the data, querying the database for full resolution measurements (120Hz). Implementing 
this is as simple as putting our scripts from the exploratory phase into a for loop. Over one day of voltage 
magnitude measurements, the first approach runs in 23 minutes or 63x real time. The algorithm detected 
six suspected voltage sags.  
 
Metric two can be similarly implemented by querying the data at full resolution within a for loop. 
However, the formulation of the metric allows us to leverage an important aspect of the platform to 
achieve even faster performance. In addition to raw values, the universal sensor platform stores summary 
statistics at the internal nodes of its tree structure. At a particular internal node, the summary statistics 
consist of the mean, minimum, and maximum over all values “below” that node. These summary 
statistics can be queried more rapidly than the raw values. Since metric two is defined only in terms of 
the mean, minimum, and maximum over a window, we can compute it by querying the summary 
statistics for the window. Over the same day of voltage magnitude measurements, the approach runs in 
1.28 seconds or 67750x real time. This algorithm detected the same six suspected voltage sags as VSM-
1.  
 
In this test case, the two approaches have dramatically different runtimes but detect the same events. 
This may not always be the case and using summary statistics inherently limits the range of analytics 
possible compared to using the raw, full resolution data. However, as this example demonstrates, the 
power of the platform is that both approaches can be prototyped and tested rapidly so the appropriate 
tradeoffs between speed and accuracy can be chosen.  
 
2.3 Test and Evaluation 
Visualization is an important sub-step of the Analysis and Modeling step, especially when using data 
consisting of multiple, high resolution streams, as is the case for PMU measurements. Furthermore, 
visualizations can be highly convincing communication tools, allowing the analyst to disseminate the 
analytic results to a wider audience. Jupyter notebooks with the Python kernel offer the user a plethora 
of open source visualization tools—including packages such as Matplotlib, Altair, and Seaborn—giving 
an extraordinary variety of ways to test, evaluate, and communicate results. This section demonstrates 
the potential to create compelling and even attractive visualizations for our voltage sag detection 
problem. 
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Figure 5 - Scatter plot showing the results for applying voltage sag metric 1 to over a full day of data. 

The performance of the voltage sag detection metric over a full day of data can be visualized with a 
scatter plot shown in Figure 5. While a few non-voltage sag events can come close, the simple constant 
thresholds used, indicated by blue dashed lines, seem appropriately set for detecting outliers. Also note 
that the voltage sag points lie close to the x=y line, indicating that the pre- and post-sag voltage levels 
are very close for this set of events.  
 

 
Figure 6 - Visualization showing the actual phasor magnitude data for each detected voltage sag. 

Based on the visualization in Figure 6, the detected voltage sags are indeed real voltage sags with a 
distinctive and consistent shape, validating this metric for a larger sample of data. Additional analyses 
can be easily visualized to offer more insights into the voltage sags and the event detection approach. A 
heat map (Figure 7) indicates the sensor locations where voltage sags occur over a month and a 
histogram (Figure 8) demonstrates the size distribution of the sags. From the heatmap, we see that sensor 
1 captures many voltage sags throughout the first part of the month. This may indicate the presence of 
a periodic load near that particular PMU which becomes inactive during the second part of the month.  
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Figure 7 - Histogram of the number of detected voltage sags per day per sensor to give a larger view of total system behavior 

over time. 

 
From the histogram, we see that most of the detected sags during the month are small--well below the 
10% level that would be noticed by the utility. Therefore, from the perspective of voltage sags, this 
feeder does not appear to have any serious issues for the month analyzed. Nevertheless, the 
visualizations are a quick and effective way to ascertain that the feeder has no issues and to determine 
potentially problematic points. For example, the presence of a periodic load near sensor 1, evident in 
the heat map visualization, suggest that this might be a good location for system operators to monitor 
and check on first when issues do arise.   
 

 
Figure 8 - A histogram showing the distribution of voltage sags detected for all available data. 

2.4. Deploying Analytics to Production 
The key difference between the prototype analysis and the move to production arises from the size of 
the data. During prototyping, a subsample of the data is interrogated locally on the analyst’s or 
engineer’s laptop. This requires the data to be transmitted from the production system, over the network, 
to the laptop. Due to the size of the data—one year of a single voltage magnitude phasor is over 30GB 
in size—and network bandwidth, prototype is often limited to testing subsets of the data and another 
mechanism is required to deploy the analytic to the full data set. Instead of moving the terabytes or 
petabytes of data to the calculation, successful big data platforms use data locality and move the 
algorithms and calculations to the data; source code describing the analytic is orders of magnitude 
smaller than the data.  
 
The DISTIL framework used by the universal sensor analytics platform leverages this same approach. 
DISTIL was created to enable the rapid development of scalable analytics pipelines with strict 
guarantees on result integrity despite asynchronous changes in data [15].  DISTIL is composed of two 
separate components: (1) distillers that apply a function to each data point or window of data points in 
one or more time series and (2) the distil processing framework that handles the performance 
optimizations and bookkeeping associated with multiple interleaved streams arriving at different rates, 
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possibly out of order, chunking, buffering, scheduling and so on.  Distillers are the “user-facing” portion 
of DISTIL. At the heart of each distiller is a smaller kernel, that contains two functions; (1) the 
precompute allows the user to specify what data will be needed for the (2) compute function that will 
operate on the data and return the computed values and associated time ranges. This model of analytics 
covers a large number of potential operations and analytics that can be performed on time series data. 
 
To implement the voltage sag detection analytic in distillate form, the analyses developed in the Jupyter 
notebook were translated into the Go Programming language. We chose to implement metric one as a 
distiller, as it scans every raw data point in the stream, as opposed to only summary statistics. Go is an 
open-source language in the C family developed by Google to make distributed, systems software 
engineering far easier for the developer [16]. Once the algorithm has been developed in the Jupyter 
environment, where its efficacy can be easily ascertained and evaluated through mathematical analysis 
and visualizations, the translation to Go is simple. However, some properties of the distil framework 
must be kept in mind when doing the translation, and occasionally the analytic algorithms must be 
adjusted to account for these. For example, distillers can be called on arbitrary length data segments in 
non-chronological order, so the processing code within a distiller must be structured to be stateless and 
idempotent. To guarantee a certain length of the data chunk is passed to the distiller for processing, the 
number of “leading points” must be set. These are points immediately preceding the block to be 
processed. The voltage sag detection method requires a window of data with length greater than or equal 
to the maximum duration of a voltage sag.  We therefore specify a certain number of leading points 
when creating our distiller and then implement the algorithm in much the same form as in the Jupyter 
notebook. 
 
Though it scans through every single measurement point, the distiller processed the entire dataset, 
approximately 200 days of data, in 125 minutes or 2300x real time.  Apart from speed, there are other 
advantages to creating a distillate of the voltage sag analytic. The distillate stream only contains a point 
with value 1 at the time of a detected voltage sag and is, therefore, much lower density than the original 
data. It is easy to visualize the voltage sag locations by viewing the distillate stream in the Plotter (Figure 
9). This visualization also leverages all the convenient multi-resolution features of the Plotter. Another 
analytic could quickly localize the voltage sags using the voltage sag distillate points, without processing 
all the original measurement points. This has great performance benefits. Finally, the distiller can be 
conveniently and quickly run on multiple or all data streams and will continue to detect voltage sags as 
new measurement data streams to the database.   
 

 
3. CONCLUSION 
 

Figure 9 – Phasor magnitude signal (green) plotted with output of voltage sag detector (red). 
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Utilities are dramatically limited in their ability both to test hypotheses and use cases leveraging data 
and to move prototype analytics into full deployment in production systems. To show that the status quo 
is not some fundamental limitation, this paper demonstrates not only the rapid development of a use 
case of interest using high density PMU data but also the deployment of this use case to a production 
big data system with operational data. This rapid traversal of the analytics pipeline was made possible 
through the use of a third-generation big data system custom designed for utility sensor data.  
 
This use case is also particularly effective for demonstrating the power of the advanced sensor analytics 
platform to enable analytics development and deployment at warp speed. By definition, voltage sags are 
brief events lasting for as short as half a cycle or up to one minute [9]. Therefore, in terms of the number 
of data points involved, detecting these events is akin to finding a needle in a haystack. For example, in 
order for a distribution synchrophasor reporting at 120Hz to detect a voltage sag over one day of 
measurements, the platform must process tens of millions of data points per stream to identify an event 
spanning on the order of tens of data points. Note that we are but scratching the surface of the tip of the 
iceberg with regards to event detection. This paper focused on identifying a particular, simple pattern 
within voltage phasor magnitude data stream that could be captured by simple statistical descriptors. 
There are numerous other event types and patterns to be discovered in PMU data that will lead to new 
for utilities.  
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