Disturbance Analysis and Monitoring using IEC 61850 Sampled Values Data in Digital Substations

N. Perera, R. Midence, A. Oliveira, ERLPhase Power Technologies Ltd. Winnipeg, Canada

Abstract

IEC 61850 sampled value (SV) based applications are becoming popular in digital substations. In these substations, analog signals from current and voltage instrument transformers (CTs and VTs) are digitized by merging units (MUs), and transmitted over the process bus using Ethernet communications. The process bus network is an Ethernet network that links the primary equipment in a substation with various secondary equipment including protection, control, and monitoring equipment. Digital substations require disturbance analysis and monitoring to ensure correct operation of the devices and equipment in the power system as well as capturing data used to monitor the health of the power system. Monitoring in utility applications includes, but is not limited to, wide area monitoring using synchrophasors, power quality calculations, fault location estimates, power swing detection and harmonic monitoring.

This paper covers the following applications in relation to disturbance analysis and monitoring in IEC 61850 based digital substations:

- Disturbance analysis using transient data at different sampling rates specified in IEC 61850 9-2 standards
- Disturbance analysis using phasor data
- Wide area monitoring
- Capturing of power quality events (harmonics, voltage sags, voltage swells, etc.)
- Calculation of power flows for monitoring purposes

Introduction

IEC 61850 based implementations have made significant progress during the last few years. Major utilities around the world are at various stages of adopting and implementing the IEC 61850 standard. However, most of the focus has been on IEC 61850 Generic Object-Oriented Substation Events (GOOSE) messages and reporting using Manufacturing Message Specification (MMS). As utilities move towards completely digital substations (encompassing digitized currents and voltages, and switchgear statuses and control signals) for protection and control schemes, it is expected that the measurement infrastructure for fault and disturbance recording will change and be based on digitized IEC 61850 sampled values (SVs).

Digital substations require that analog signals from current and voltage instrument transformers (CTs and VTs) be digitized by merging units (MUs), and transmitted over the process bus using Ethernet communication. The process bus is an Ethernet network that links the primary equipment in a substation with various secondary equipment including protection, control, and monitoring equipment. In greenfield digital substations, large-size CTs and VTs can be replaced by non-conventional instrument transformers (NCITs) which directly convert the electrical signals into optical signals.

The IEC 61850 standard was initially released as a standard for 'communication networks and systems in substations' by the International Electrotechnical Commission TC 57 WG 10 in 2003 [1]. Part 9-2 of the IEC 61850 standard [2] defines the service mapping required for the transmission of SVs. However, specific implementation requirements were not defined in the IEC 61850-9-2 standard. The IEC 61850-9-2LE implementation guideline [3] was drafted by the UCA International Users Group to fill this gap by providing a guide that defines the logical devices, dataset and attributes, sampling rates, time synchronization requirements, and message format to be used by MUs in publishing SVs.

MUs typically sample analog measurements from current transformers (CTs) or voltage transformers (VTs), convert these analog quantities to digital signals, and then publish them over an Ethernet communication network as Layer 2 IEC 61850-9-2 multicast messages. Sampled values are transmitted using a publisher/subscriber multicast mechanism using two sampling rates. These are 80 and 256 samples per cycle (s/c), respectively. The former is specified for protection applications, while the latter is to be used for measurement-related applications.

Some of the benefits of an IEC 61850-9-2 system include: a decrease in project cost due to the reduction in copper cabling, better system-wide data availability/sharing, and reduced risk of CT saturation. Substation safety is also improved by eliminating concerns associated with open CTs (since electrical signals from the CTs and PTs are digitized).

Technical Considerations

Monitoring devices used in IEC 61850 based digital substations requires multiple features:

- Subscription to IEC 61850 SV and GOOSE data
- Perform mathematical calculations for PQ, harmonics, etc.
- Publish calculated data using IEC 61850
- Perform synchro-phasor calculations and publish the data for wide area monitoring
- Store the fault data and calculated data
- Support network redundancy
- Accurate time synchronization

Subscribing IEC 61850 9-2 sampled value data from multiple merging units

Figure 1: Subcribing data from muliple merging units

IEC 61850 based substations include multiple merging units publishing data. Subscription of data from multiple merging units into a single monitoring device requires higher processing power and higher communication bandwidth. It is important to select a device capable of handling these challenges.

Subscribing to multiple IEC 61850 GOOSE messages

Substations include hundreds of status measurements that are monitored using GOOSE messages. The subscription of multiple IEC 61850 GOOSE messages into a single monitoring device (IED) requires a high level of processing.

Figure 2: Subscription to GOOSE data

Publishing of IEC 61850 measurements suitable for wide area monitoring

IEC 61850 based wide area monitoring has become useful for digital substation applications. Publishing of IEC 61850 data/measurements requires utilization of IED resources such as processing power and communication bandwidth. In addition, a reasonable latency must be maintained between the publisher and subscriber. When selecting a monitoring device/IED, all these factors must be considered.

Monitoring large substations with multiple measurement inputs

The measurement requirement for larger substations can be as high as 200 (or more) current or voltage analog measurements and 500 (or more) status measurements. The sampling rate for current and voltage measurements can be up to 256 s/c sample rate. The monitoring IED must be capable of handling these requirements without negatively impacting overall performance.

Synchrophasor calculations and streaming synchrophasor data

Standard IEC/IEEE synchrophasor calculations [5] require implementation of P and M class filtering for multiple channels, involving significant computational power. In addition, reporting synchrophasor data as per the IEC/IEEE synchrophasor standard requires publishing calculated/measured data at higher reporting rates. In order to support synchrophasor calculations and streaming synchrophasor data, hardware must be selected carefully.

Figure 3: PMU applications

Performing calculations

Multifunctional IEDs used for digital substation are required to monitor quantities that are not directly measured but that are calculated. A list of typical calculated quantities is summarized below:

- Summation channels
- Sequence calculations
- Power quality calculations
- Active power, reactive power and power factor calculations
- Harmonics and THD calculations
- Fault location estimates in transmission lines
- Power swing, voltage sag and voltage swells

All these calculations listed above are performed simultaneously and require digital filtering, discrete Fourier transform, vector transform, additions, subtractions, etc. An IED capable of handling all these functionalities requires a high degree of computational capacity. In addition, some of these calculations require buffering of historical data that demands extensive usage of memory.

In summary, technological challenges demand the following requirements for a monitoring device or IED:

- Adequate processing power to handle extensive calculations, filtering of data, etc.
- Adequate memory to buffer historical data
- Higher communication bandwidth to handle SV data
- Multiple communication paths to publish and subscribe data from multiple IEDs
- Capability to meet network redundancy requirements
- Capability to store large amounts of data or samples

Application

In order to evaluate the operation of a sampled value based digital fault recorder, consider the following application show in Figure 4. In this application, three industrial merging units with IEC 61850 9-2 LE support was considered [7] [8].

Figure 4: Sampled values based DFR connected to merging units

MU Settings

The merging units were configured to publish IEC 61850 9-2 LE data at 256 s/c rate. Figure 5 and 6 show the basic SV configurations used in the industrial merging units.

Device Name ×				
Site Site Sverview Configuration Type	Analog Merging Unit	Device Settings Remote Commands Open Save		Remote 📃
System	AMUAppConfig	· · · · · · · · · · · · · · · · · · ·		×
Ecrificate Import from IEC61850 SCD file Export to IEC61850 IID file	 Power System Properties Inputs Digital AC Current Measurement AC Voltage Measurement Outputs Data Reporting & Controls IEC61850-9-2 MSVCB02 Measure 9-2LE MSVCB02 Measure 9-2LE MSVCB03 Protection 61869-9 MSVCB04 Measure 61869-9 GOOSE Publisher (IOs - gcb01) Modbus (Slave) 	General Properties Enable this Reporting Adapter Address Application ID (APPID) Multicast MAC Address VLAN D VLAN Priority Multicast Sampled Values Configuration Configuration revision [ConfRev] Number of ASDU [noASDU] (read only) Sampling mode [SmpRate] (read only) Sampling mode [SmpRate] (read only) Multicast sampled value identifier [MsvID] SMV Sampling Mode Field Enabled [OptFids.smpMod]	Ethernet 1 Ox4001 Ol:00:cd:04:00:14 4 4 1 8 Samples Per Period 256 AMUCSMU11 □	
v4.3.1.41				

Figure 5: MU settings

MU320 Extended	
ED Power System Sampled Values Binary GOOSE a	Id Report Logic
Protection	MU01 -> Measurement
Meddement	[☑] Enable
	Message Name MSVCB02
	Description Measurement Sampled Value Stream
	SMV ID GEMU01
	Dataset PhsMeas1 ~
	Message Type Multicast ~
	Sample Rate 256 ppc Number of ASDUs 8
	Options
	Refresh Time
	Sample Rate
	Security
	APP ID 0x4000
	MAC-Address 01-0C-CD-04-00-02
	VLAN-PRIORITY 4
	VLAN-ID 0 0x0
	Cancel Ok

Figure 6: MU settings

DFR Settings

Sampled value input channels can be configured as either voltages or currents. Figure 7 and 8 show the process of input channel configuration and process of data mapping.

ement Tree										A	nalog In	put Con	figuratio
Identification	Element	Type	De	scriptio	n	Chann	el	Input T	vpe				
	Bay 1	la	~ M	U01		1		~ 99900	1 SV Aac		~		
Bay1				Data	- Cha		Cip ole Marro						
Analog Inputs	Uoits 1000 A/A	An		Rate	val	nge	Single Harm	Nomi	nalLevel	SV Clinnin	a Limit	Peak Se	c. Value
- Va:MU01	View/Set S		gie orre	10			2	5		20 X	times of	141.42	14 6
- D Vb:MU01	A VIEWISELS	Care		1.0	~	Cycle(s)	3 ~			N N	ominal Value	0	~
Vc:MU01	Actions											_	
- D Vn:MU01										1	Cross		Alasma
la:MU01		Limit		Delay		Enable	Fault	Swing	Log	Notify	Trigger	Priority	Contact
- D Ib:MU01	High Magnitude	6	4	0	500							1	
- C Ic:MU01	Low Magnitude	1	A	0	sec					H	H	1	
	Negative Rate of Cha	inge -0	A	0	sec	H	H	H	H	H	H	1	
G D Serveres Eventions	Positive Rate of Char	nge 0	A	0	sec			H	H	1H	H	1	
B Impedance Functions	Single Harmonic	1	%	1	sec							1	
Watte /Vars Functio	Total Harmonic Disto	rtion 1	%	1	sec							1	
	Sag		%										
Logic Functions	Swell		%										
E E Fault Locatora													
PF Functions													

Figure 7: Sampled value input channel configuration

DFR_SV_Project 1 – IEC 61850 Com File Edit Settings Help New Open Save Save As Undo Project Editor	figurator Redo Delete IED Export CID View Online Mapping Import IED to Properties Subscription Mapping IED Configuration	o Palette	0	×
DFR_SV_Project 1 Local IEDs PRR_SV_1 Remote Publisher MergingUnit 1 MergingUnit 3	GOOSE Mapping Sampled Value Mapping Sampled Value Mulping Sampled	SMV Subscription of IED DFR_SV_1 Mapped to Sti SMV IN Mapped Data C01 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TCTR15MX5Amp5v5in C03 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TCTR15MX5Amp5v5in C03 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TCTR35MX5Amp5v5in C03 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TCTR35MX5Amp5v5in C03 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MX5Amp5v5in C03 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MX5Vol5v5inst C04 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MXSVol5v5inst C05 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MXSVol5v5inst C05 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MXSVol5v5inst C05 SN2/MULCSMULTEH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MXSVol5v5inst C15 SN2/MULCSMUL2EH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MXSVol5v5inst C15 SN2/MULCSMUL2EH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MXSVol5v5inst C14 SN2/MULCSMUL2EH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MXSVol5v5inst C15 SN2/MULCSMUL2EH_11/MU01.MSVCB02/PhsfMeas1/Mu01/TVTR35MXSVol5v5inst C16 SN2/MULCSMUL2E		*
IED Palette		Output		

Figure 8: Sampled value input mapping

Configuration of Summation Channels

IEC 61850 sampled value inputs can be configured for summation calculations, as shown in Figure 9.

														Summa	ation F	uncuon configuratio
Element		Тур	e	De	scrip	tion		Su	mmation	Index						
Line1		laSu	ım	~ F	1			3		`						
Units: A		_														
Scale: 10	00 A/A		Rat	te of Ch	nange	Inter	val 1.0) ~	Cycle(s)						
Define Inni	ute:															
Denne mpt	Element:Type: D	escrip	tion							Scale Fac	or	Angle O	ffset			
Input 1	Bay1:la:MU01								v x	1	1	0				
	-								- 1							
Input 2	Bay3:la:MU03								~ X	1	1	180				
										4	Ξ.	0				
Input 3	<unassigned></unassigned>								✓ X	<u> </u>		Ľ				
Actions																
						_		_			_			Crose		Alarm
		Lim	it	Del	lay		Enabl	le	Fault	Swing	L	.og	Notify	Trigger	Priority	Contact
High Ma	agnitude	6	A	0	s	ec	M	7	7	R		l l		2	1	
Low Ma	agnitude	1	A	0	s	ec	M	4	1			i	-		1	
Negativ	- Data of Ohmer			0		_			-			i			1	
Incyative	e Rate of Chang	e - 0	~		3	ec		- 11								
Positive	e Rate of Change	0	A	0	S	ec ec			; ;	Н а)		ĺ			1	
Positive	Rate of Change	Type	A	Descr	si	ec	s	ummati	(a)]	Summ	nation F	1 unction	
Element	Rate of Change	Type IaSum		Descr T1	iption	ec	S	ummati	(ion Index	a)			Sumn	nation F	unction	
Element	Rate of Change	Type IaSum	A A	Descr T1	iption	ec	s	ummati	(a)			Sumn	nation F	unction	
Element Line2 Units: A Scale: 100	Rate of Change	Type IaSum	A A Rate o	Descr T1	iption ge Inte	ec ec	S 6	ummati 3 V Cyc	(ion Index	a)]	Sumn	nation F	unction	
Element Line2 Units: A Scale: 100 Define Input	Rate of Change	Type	A A Rate o	Descr T1	iption ge Inte	ec ec	S 1.0	ummati s	(ion Index cle(s)	a)]	Sumn	nation F	unction	
Element Line2 Units: A Scale: 100 Define Input	e Rate of Change Rate of Change 00 A/A ts: Element:Type: De:	Type laSum	A A Rate o	Descr T1	iption ge Inte	ec ec rval	S 6	ummati 3 ~ Cyc	(ion Index cle(s) Scale I	a)	Angle (Offset	Sumn	nation F	unction	-
Element Line2 Units: A Scale: 100 Define Input	e Rate of Change Rate of Change DO A/A Its: Element:Type: De: Bay2:la:MU02	Type laSum	A A Rate o	Descr T1	iption	ec ec	S 6	ummati 3 V Cyc	(ion Index cle(s) Scale I	a)	Angle (Offset	Sumn	nation F	unction	- Configuration
Element Line2 Units: A Scale: 100 Define Input 1	e Rate of Change Rate of Change DO A/A Its: Element.Type: Der Bay2:la:MU02 Bay3:la:MU03	Type laSum	Rate o	Descr T1	iption ge Inte	ec ec	S	ummati 3 V Cyc	(ion Index cle(s) Scale I (1 (1	a)	Angle (Dffset	Sumn	nation F	unction	Configuration
Element Line2 Units: A Scale: 100 Define Input Input 1 Input 2 Input 3	PRATE of Change Rate of Change DO A/A ts: Element:Type: De: Bay2:la:MU02 Bay3:la:MU03 <unassigned></unassigned>	Type laSum	Rate o	Descr T1	iption ge Inte	ec ec vrval	S	ummati 3 V Cyc	(ion Index cle(s) Scale I (1 (1	a)	Angle (0 0	Dffset	Sumn	nation F	unction	Configuration
Element Line2 Units: A Scale: 100 Define Input 1 Input 1 Input 2 Input 2	e Rate of Change Rate of Change DO A/A Its: Element.Type: De: Bay2:la:MU02 Bay3:la:MU03 <unassigned></unassigned>	Type InSum	A A	Descr T1	iption ge Inte	ec ec rval	S	ummati 3 V Cyc	(ion Index cle(s) Scale I c 1 c 1 c 1	a)	Angle (0 0	Dffset	Sumn	nation F	unction	-
Element Line2 Units: A Scale: 100 Define Input 1 Input 2 Input 2 Input 3	DO A/A ts: Element:Type: De: Bay2:la:MU02 Bay3:la:MU03 <unassigned></unassigned>	Type IaSum	Rate o	Descr T1 t1 bf Chang	iption ge Inte	ec ec erval [S 6	ummati 3 V Cyc V X V X Fault	(ion Index cle(s) Scale I (1 (1 (1 (1)	a)	Angle (0 0 0	D ffset	Sumn	Priority	Alarm	Configuration
Element Line2 Units: A Scale: 100 Define Input Input 2 Input 2 Input 3 Actions:	DO A/A ts: Element:Type: De: Bay2:la:MU02 Bay3:la:MU03 <unassigned></unassigned>	Type laSum Limit	A A	Descr T1 T1 of Chang	sec.	ec ec rrval [En	S E E E E	ummati 3 Cyc > X X Fault	(ion Index cle(s) Scale I c 1 c 1 t Sw	a)	Angle (0 0 0	Diffset	Summ Cross Trigger	Priority	Alarm	- Configuration
Element Line2 Units: A Scale: 100 Define Input Input 1 Input 2 Input 2 Input 3 Low Mat	DO A/A ts: Element:Type: De: Bay3:la:MU03 <unassigned></unassigned>	Type laSum Limit 6 1	A A A	Descr T1 f Chang 0 0	sec sec	ec ec rrval [S e 1.0	ummati 3 Cyc X X X X X X X X X X X X X X X X X X X	(ion Index cle(s) cle(s) c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1	a)	Angle 0 0 0 0	Diffset	Sumn Cross Trigger	Priority	Alarm Contact	- Configuration
Element Line2 Units: A Scale: 100 Define Input Input 1 Input 2 Actions: High Mag Low Mag Negative	PRATE of Change Rate of Change DO A/A ts: Element:Type: De: Bay2:la:MU02 Bay3:la:MU03 <unassigned> gnitude gnitude F Rate of Change</unassigned>	Type IaSum Scription	A A A A A	Descr T1 If Chang Delay 0 0	sec sec sec	ec ec rrval [s I 1.0	ummati 5 Cyc 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(ion index cle(s) Scale 1 (1 (1 (1 (1 (1 (1 (1 (1 (1))))))))))	Factor	Angle (0 0 0	Notify	Cross Trigger	Priority	Alarm Contact	Configuration

Figure 9: Summation channel configuration

Figure 10 shows an example of power quality calculations using IEC 61850 9-2 LE sampled value data captured during the prototype testing.

Figure 10: Power calculations

Harmonics

Figure 11 shows the harmonics calculations performed using IEC 61850 9-2 LE data captured by a DFR.

Figure 11: Harmonics calculations

Voltage Sag and Swell

The DFRs are capable of capturing voltage sag and swell conditions. Figure 12 shows the settings applicable to voltage sag and swell functions. Figure 13 and 14 show the oscillography captured by the DFR during the voltage sag and swell conditions.

			Deere			Channel		la se de	T				
iement:	туре		Descr	iption		Channel		Input	Туре				
FRV	/a	\sim				13		~ 9990	000 SV Va	C		- * **	
nits 2 kV/V V View/Set Scale	-	Angle O 1	ffset	Rate o Interval 1.0	f Change	Sin Nur e(s) 60	gle Harmo nber ~	nic No 69	minal Leve	SV C	ipping Li x time Nomi	mit es of nal Value	Peak Sec. Valu 195.1615 V
	Limit		Delay		Enable	Fault	Swing	Log	Notify	Cross Trigger	Priority	Alarm Contact	
High Magnitude	0	V	0	sec							1		
Low Magnitude	15	V	0	sec							1		
Negative Rate of Change	-0	V	0	sec							1		
Positive Rate of Change	0	V	0	sec							1		
Single Harmonic	4	%	1	sec							1		
Total Harmonic Distortion	4	%	1	sec							1		
Sag	75	%									1		
	110	0/_			a						1		

Figure 12: Voltage sag and swell settings

Figure 13: Voltage sag oscillography captured by a DFR

		300.000k			
DFRV:Va.		200.000k-	NUMBER OF THE OTHER	нопонникование	ANADAN
		100.000k-		19191919191919191919191919191919191919	
DFRV:Vb.		0.000 -*****		n benn die de Lander al die bekenden die die die die beer nie.	
		-100.000k-			
DFRV:Vc.		-200.000k-	A REAL PROPERTY AND A REAL		
		-300.000k			
		1.00			
	Reco	ord Summary and Ev	ent List		×
		Record Name: 20	21-11-29 22.18.09.008F1.tlr		
		Start Time: 20	21-11-29 22:18:08.008		
		Trigger Time: 20	21-11-29 22:18:09.008		
		Stop Time: 20	21-11-29 22:18:21.008	Record Type: fault	
		Unit ID: I	DFR 1-210609-07	Station Name: unspecified	
		Serial Numebe	er: DFR 1-210609-07	Product: DFR 1	
		UTC Offset: -0	6:00	-	
		Time Stamp	Event List: 10 events	Quality	^
	1	2021-11-29 22:18:09	DFRV:Logic:Ligc1 Inactive	GOOD (0000 0000 0000 0000)	
	2	2021-11-29 22:18:09	DFRV:Vseq -seq High Mag.	GOOD (0000 0000 0000 0000)	
	3	2021-11-29 22:18:12.	DFRV:Vb:Swell 0.992s, 160.0kV	GOOD (0000 0000 0000 0000)	
	4	2021-11-29 22:18:12.	DFRV:Va:Swell 1.000s, 159.9kV	GOOD (0000 0000 0000 0000)	
	5	2021-11-29 22:18:12.	DFRV:Va:Swell 1.000s, 159.9kV	GOOD (0000 0000 0000 0000)	
	6	2021-11-29 22:18:13.	DFRV:Vseq -seq High Mag.	GOOD (0000 0000 0000 0000)	
	7	2021-11-29 22:18:13.	DFRV:Va Low Mag.	GOOD (0000 0000 0000 0000)	
	8	2021-11-29 22:18:13.	DFRV:Vb Low Mag.	GOOD (0000 0000 0000 0000)	~
	^	0004 44 00 00:40:40			
				Print Copy	Close

Figure 14: Voltage swell oscillography captured by a DFR

Fault Location Estimation

The DFRs are capable of calculating fault location on transmission lines during fault conditions. Figure 15 shows the basic parameters (sequence impedances, distance of the line, etc.) used in fault locator settings.

Flomont	DFR A	Analog Input Co	ntiguration	t Locator Indox
DEDV	Туре	EL 1	r aui	Locator index
DFRV	FLOC	FLI	1	~
Initiating E	vent DFRV:Logic:Log	ic1		~
	[Initiating Event accurate fault lo	should have a 1.5 cation results]	cycle pickup	delay to get
Phase A \	/olts DFRV:Va			~
Phase B	Volts DFRV:Vb			~
Phase C	Volts DFRV:Vc			~
Phase A A	mps DFRV:la			~
Phase B A	mps DFRV:Ib			\sim
Phase C A	mps DFRV:Ic			~
Pos S	equence Impedance	1.841667 + j	37.625 F	Pri Ohms
Zero S	equence Impedance	36.33333 + j	122.65 F	Pri Ohms
	Line Length	200 km	~	
Hide Tree	Show Secondary U	Inits		

Figure 15: Fault locator settings

Figure 16 show oscillography captured during a single-phase fault. Table-1 show the fault location estimation results.

Figure 16: Oscillography captured during a fault

Table-1: Fault Location Results

Type of Fault	Actual	DFR Estimate	% Error
Single-phase fault	20.0 km	20.1 km	0.05
Three-phase fault	150.0 km	151.1 km	0.55

Synchrophasor Application

Figure 17 shows the PMU configuration settings with support for C37.118.1.

ement Tree						00000					
Identification Records Confidurat						PMU Definition					
Channels	Sample Rate:	60	~	frames / se	cond		PMU Standard	C37.1	118.1-2	011 (P class)	
Meter Groups	Header Frame Text	Test						C37.1	18-200	5	
PMU	Reporting Format							C37.1	18,1-2	011 (P class)	
1. State 1.	Phasor	Float	~								
	Annala	Float		1							
	Analog.	T NOUL									
	Fred / KOC Fred	Fioat	~	1							
	. Phasor Options					Selected Channel	Full Scal	Unit	Activ	Name to Rep	J
	Analog Options					PMU Phasors	1		Parton a		1
	Digital Options			Row 1	Bus#1:Va	10000010010000000000000000000000000000	195.161	kV	2	Bus#1:Va	1
				Row 2	Bus#1:Vb		195.161	kV		Bus#1:Vb	
				Row 3	Bus#1:Vc		195.161	kV		Bus#1:Vc	1
				Row 4	Bus#1:Vn		195.161	kV		Bus#1:Vn	1
				Row 5	Bus#1:la		56568.5	A		Bus#1:la	1
				Row 6	Bus#1:lb		56568.5	A		Bus#1:lb	1
				Row 7	Bus#1:lc		56568.5	A		Bus#1:lc	1
				Row 8	Bus#1:In		56568.5	A		Bus#1:In	1
>				10					(me		7

Figure 18 shows the results obtained during the dynamic testing of the PMU. It shows performance of the synchrophasor function using IEC 61850 sampled value data, as per synchrophasor test specifications [6].

Figure 18: PMU test results

GOOSE Input Monitoring

DFRs can subscribe to single point status (Boolean), double point status, Health, Int32, or Int32u data types, as shown in Figure 19. Figure 20 shows an example of GOOSE data measurements captured by the device.

Element: GOOSE	1	Type BOOI	ean 🗸	Description IED-1-PS	1:	Channel: 1	Ý	-	256 channels available for GOOSE
Data Actions:	type	BOOL Dbpo: Health INT32	EAN						subscription
State	La	INT32	U	Fault	Swing	Log	Priority	Alarm Contact	
TRUE	Active						1		
FALSE	Inactive	3		M			1		

Figure 19: GOOSE subscription settings

IEC 61850 Server Application

Measurements from the IEC 61850 server can be obtained using an IEC 61850 client such as IEDScout software. Figure 21 shows the Phase A current (Figure 21a) and positive sequence voltage (Figure 21b) from the measurement LD of the IEC 61850 server of the IED.

Figure 21: Measurements from an IEC 61850 server, including (a) Phase A current, (b) Positive sequence voltage

PTP – Time Synchronization

rp	
Time Synch Mode:	PTP Only ~
PTP Global	
Drefler	Deves IFFF 007.000
Prolie.	Power-IEEE C37.236
Sync Lower Bound:	30 [19999999999] ns
Sync Upper Bound:	1000 [31100000000] ns
PTP Clock	
Delay Mechanism:	P2P
Priority 1:	255
Priority 2:	255
Primary Domain:	254 [0.255]
Network Protocol:	IPv4 Ethernet Layer 2 (IEEE 802.3)
VLAN:	Enabled
VLAN ID:	[0,24042] (Refer to the User Manual for available VLAN IDs based on the Active Mode selected on the 'Communication > Network Redundancy' screen)
VLAN Priority:	4 [07]
PTP Port	
P2P Delay Interval:	1 v [1, 2, 4, 8, 16, 32] s
A	0 [200000000 200000000 pc

Figure 22: PTP time synchronization

The DFR under evaluation is capable of providing time synchronization via PTP protocol, which is the preferred method in digital substations where time sync signals come via the communication network.

Monitoring of IEC 61850 Data Streams

Monitoring the health of the IEC 61850 GOOSE and SVM streams is important for troubleshooting purposes. The DFRs under evaluation support the LSVS and LGOS logical nodes. Figure 23 shows an example of LSVS alarm events observed during a failure in SVM data streams.

File Edit Option Help			
2021-11-26 13:56:06:00 2021-11-26 13:56:06:00 2021-11-26 13:56:06:00 2021-11-26 13:56:06:00 2021-11-26 13:56:06:00 2021-11-26 13:56:06:00 2021-11-26 13:56:06:00 2021-11-26 13:56:06:00 2021-11-26 13:56:06:00 2021-11-26 13:55:06:00	DFR_1 DFR_1 DFR_1 DFR_1 DFR_1 DFR_1 DFR_1 DFR_1 DFR_1	SMV stream 1 sync alarm Active, sync 0x00000000 GOOD (0000 000 SMV chan 1 out of range (0.000 vs.1950.000), ecnt +++++ GOD (0000 000 SMV chan 2 out of range (0.000 vs.4550.000), ecnt +++++ GOD (0000 000 SMV chan 3 out of range (0.000 vs.4550.000), ecnt +++++ GOD (0000 000 SMV chan 4 out of range (0.000 vs.2600.000), ecnt +++++ GOD (0000 000 SMV chan 5 out of range (0.000 vs.2284.000), ecnt +++++ GOD (0000 000 SMV chan 6 out of range (0.000 vs.313.000), ecnt +++++ GOD (0000 000 SMV chan 7 out of range (0.000 vs.318.000), ecnt +++++ GOD (0000 000 SMV chan 8 out of range (0.000 vs.318.000), ecnt +++++ GOD (0000 000 SMV chan 8 out of range (0.000 vs.318.000), ecnt +++++ GOD (0000 000 SMV chan 8 out of range (0.000 vs.318.000), ecnt +++++ GOD (0000 000 SMV chan 8 out of range (0.000 vs.318.000), ecnt +++++ GOD (0000 000 SMV chan 8 out of range (0.000 vs.318.000), ecnt +++++ GOD (0000 000	
2021-11-26 13:55:06:00 2021-11-26 13:55:06:00 2021-11-26 13:55:06:00 2021-11-26 13:55:06:00	DFR_1 DFR 1 DFR_1 DFR_1	SMV comm. alarm Inactive, src. LSVS2 GOOD (0000 000 SMV chan 9 out of range (0.000 vs15.000), ecnt +++++ GOOD (0000 000 SMV chan 10 out of range (0.000 vs137.000), ecnt +++++ GOOD (0000 000 SMV chan 11 out of range (0.000 vs38.000), ecnt +++++ GOOD (0000 000	× •
Image: Second List Erase Refresh Print Export to CSV Main Time Events Events			Close

Figure 23: Example of LSVS alarm

Simulation Mode

In IEC 61850 testing, the simulation operation mode enables testers to use a control command to put the IEDs into simulation mode. The DFRs under evaluation support simulation mode for GOOSE and SMV subscriptions. Simulation mode is set (on/off) for the entire IED.

Conclusion

As more IEC 61850 based digital substations are implemented around the world, protection and disturbance recording functions are completely digitized and based on communication networks. Monitoring systems capable of providing complete visibility into digital substations are extremely useful. In this paper, key requirements in selecting a suitable monitoring/recoding system have been discussed. The performance of such a fully digital recoding and monitoring system was evaluated using an example scenario simulated in a lab environment including typical functionalities such as PQ, fault location, PMU, etc.

Biographies

René Midence (IEEE M'2007, IEEE SM'2009) is a 1983 graduate from the University of Honduras with a Bachelor of Applied Science degree in Electrical and Industrial Engineering, and with over 35 years of experience in power systems, protection & control, SCADA, substation automation and substation LAN systems. His well-rounded experience covers the fields of consulting and engineering, construction and commissioning, manufacturing, strategic marketing, technical support and training. He has contributed to the development and successful introduction to market of new state-of-the-art protection and control microprocessor-based relays, and Ethernet switches and routers. He is a Senior Member of the IEEE with active participation in the development of IEEE Standards and member of the IEEE Power Systems Relaying Committee (PSRC). He joined ERLPhase Power Technologies in 2010 and currently holds the position of Director of Technical Services.

Anderson Oliveira With over 18 years of experience in the power industry, Anderson Oliveira is registered as a Professional Engineer in the Province of Ontario, Canada, and hold both a Bachelor and Master of Engineering degree in Electrical Engineering. He has worked for utilities, engineering consulting firms, and, currently, he works for a relay, power monitoring device manufacturer, performing engineering activities for generation, transmission and distribution systems on a domestic and multinational basis.

Nuwan Perera (IEEE M'2005, IEEE SM' 2017) earned his BSc Electrical Engineering degree in 2003 from the University of Moratuwa, Sri Lanka and the M.Sc. and Ph.D. degrees from the University of Manitoba in 2007 and 2012, respectively. He is a senior IEEE member, actively involved with various IEEE Power Systems Relaying

Committee (PSRC) working groups. He worked for ERLPhase Power Technologies from 2011 to 2021. Currently, he is working as a Project Engineer at Stantec Consulting. He is also involved in academic research activities as an adjunct professor at the University of Manitoba.

References

[1]. IEC 61850-1:2013, Communication Networks and Systems for Power Utility Automation - Part 1: Introduction and Overview.

[2]. IEC 61850-9-2: Communication Networks and Systems in Substations, Part 9-2: Specific Communication Service Mapping (SCSM) – Sampled Values Over ISO/IEC 8802-3; 57/690/FDIS.

[3]. UCA International Users Group: Implementation Guideline for Digital Interface to Instrument Transformers Using IEC 61850-9-2.

[4]. TESLA 4000-SV Sampled Values Based Fault and Disturbance Recording.

[5]. IEEE/IEC 60255-118-1-2018 - IEEE/IEC International Standard - Measuring relays and protection equipment - Part 118-1: Synchrophasor for power systems – Measurements.

[6]. IEEE Synchrophasor Measurement Test Suite Specification-Version 3.

[7]. MU320E Integrated Merging Unit – Technical Manual.

[8]. Vizimax AMU User Manual, VIZIMAX Inc. 2284 de la Province Street Longueuil, QC, Canada.