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Abstract— As relays and merging units are becoming more 

sophisticated by using higher resolution (higher sampling rates) 

and advanced protection functions and applications, the errors 

from instrumentation channels remain practically the same. As a 

matter of fact, instrumentation channel errors are now much higher 

than the errors introduced by the data acquisition even in earlier 

generations of sensor-less systems. Efforts to account and correct 

for instrumentation channel errors date back several decades. This 

paper presents recent developments in instrumentation channel 

error correction. We present a dynamic state estimation method 

which uses detailed mathematical models of the entire 

instrumentation channel and dynamic state estimation to provide a 

correction for the instrumentation channel error on a sample by 

sample basis. We organize the method in such a way that the 

merging unit reports directly primary values that have been 

corrected for instrumentation error. We propose that this method 

be an integral part of merging units. The paper presents examples 

that indicate the effectiveness of the method to correct 

instrumentation channel errors including errors resulting from 

saturation of CTs. 

Index Terms-- Merging Units, Instrumentation Channel Error, 

Dynamic State Estimation. 

INTRODUCTION  

The performance of any protection system is always 
dependent upon the quality and validity of the 
measurements. This has been recognized for any protective 
system for years. The relay instrumentation subsystem 
provides the proper interface between the high current 
electric power system and the relays that operate at relatively 
low voltage and current. Ideally, the secondary voltage and 
current of instrumentation channels should be an exact scaled 
replica of the primary quantities.  In practice, however, the 
instrumentation channel will introduce errors which are 
typically much higher than the errors introduced by the relay 
or merging unit analog input and A/D converters. In 
addition, during faults, there is the possibility of CT 
saturation which typically leads to distorted secondary 
current waveforms and associated large errors. In some 
cases, distorted measurements may result in mal-operation of 
protective relays [1].   Therefore, it is essential to come up 
with methods which can correct instrumentation channel 
errors.  

Current instrumentation channels have received 
substantial attention due to the saturation of CTs. Much work 
has been devoted to research on compensating the CT’s 
secondary current, which can be classified into three 
categories: (1) Compensating the secondary current via 
computation of the magnetizing current [2-4]. Reference [2] 
proposes estimation of the magnetizing current by 

calculating the flux of the current transformer, then adding 
the magnetizing current to the secondary current to achieve 
current compensation. This method can perform well, but it 
can only work under the condition that there is no remnant 
flux in the current transformer, which is not true during 
transients including fault condition. Also, this method only 
works well for a specific magnetization curve, which cannot 
be universally applied in practice. Another approach in 
reference [3-4] applies morphological lifting scheme to the 
detection of the first saturation point of the current 
transformer. Although this approach can avoid the effect of 
remnant flux,  it relies too much on the precise detection of 
the first saturation point, which is greatly affected by 
disturbance and noise. More importantly, this method can 
not achieve on-line correction of CT primary current, which 
does not satisfy the real-time requirements of protective 
relays.  (2) Reconstructing the secondary current using 
artificial neural network (ANN) [5-8]. The ANN is utilized 
to learn the nonlinear characteristics of magnetizing current 
and then to reconstruct the secondary current. However, 
there is much difficulty in choosing the appropriate ANN 
parameters to fit different CT types in practice. Again, this 
method does not achieve the on-line correction of CT 
primary current. (3) Estimating the secondary current 
utilizing the unsaturated waveform portions [9-12]. This 
method separates the secondary current into unsaturated part 
and saturated part based on setting an exact reference point 
(RP). Then, the extracted unsaturated portion will be used in 
the current estimation. However, it is not easy to accurately 
identify the RP and this method will fail to obtain a good 
estimation without an accurate RP. Reference [13] 
investigates an on-line method to correct the errors 
introduced by the instrument transformers steady -state 
waveform measurements. The repetitive learning control is 
used to track the transformer output waveforms. The work 
presented in this paper is focused on a voltage instrument 
transformer. Performance when the method is applied to a 
current transformer is not provided. While the objective of 
this method is to provide an online method, the required 
computations and training make is impractical for today’s 
speed requirements.   

The introduction of merging units enables error 
correction within the merging unit. Specifically, each 
instrumentation channel of a merging unit can be designed to 
provide corrected primary values. This paper addresses this 
goal and proposes an error correction method for the entire 
instrumentation channel using dynamic state estimation. The 
method is dependent upon a high fidelity model of the 
instrumentation channel. We propose to cast this model as a 
quadratized dynamic model of the entire instrumentation 
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channel. The dynamic state estimation uses this model. To 
simplify the analytics, the quadratized dynamic model is 
integrated using the quadratic integration method to generate 
the Algebraic Quadratic Companion Form (AQCF) of the 
instrumentation channel. The measurements expressed via 
the AQCF model providing a quadratic dynamic model of 
measurements [14]. The dynamic state estimation (DSE) is 
formulated using the quadratic measurement models. The 
dynamic state estimation operates on the sampled values. 
The computations are performed within the sampling period 
making the method real time. This method is an integral part 
of merging units so that that the merging unit reports directly 
estimated primary values which have been corrected.  

This paper presents the method with emphasis on current 
instrumentation channels. It should be understood that the 
method is equally applicable to voltage instrumentation 
channels. 

DYNAMIC MEASUREMENT MODEL OF CURRENT 

INSTRUMENTATION CHANNEL 

 

 
Figure 1: Typical current instrumentation channel configuration 

 

A typical current instrumentation channel configuration is 

shown in Fig. 1. Three components can be identified: the 

current transformer, the instrumentation cable and the 

burden (resistor). The current instrumentation subsystem is 

used to convert the high current of the power system into 

instrumentation level currents that can be fed into the 

Merging Unit. Standard currents for Merging Unit are 5A 

and 1A. Ideally, the currents fed into the merging unit 

should be scaled replicas of the high currents of electric 

power system. Practically, however, the current 

instrumentation channels introduce errors that can distort the 

secondary waveforms when CT saturates. In some cases, 

these errors will even cause the mal-operation of the relay. 

Therefore, to make the protection scheme reliable, it is 

essential to correct the errors introduced by the current 

instrumentation channels. 

The problem of current instrumentation channel error 

correction is stated as follows: a secondary measurement is 

taken at the merging unit (current through the burden).  It is 

desirable to compute the primary current as accurate as 

possible. The computation is performed via a dynamic state 

estimation that provides the best estimate of the primary 

current. Subsequently, the merging unit streams the best 

estimate of the primary current upstream for utilization by 

the logical nodes of the protection and control system.  

 

Dynamic Quadratized Measurement Model: The 

measurement model is a mathematical expression, which 

expresses each measurement as a function of state variables. 

The state variables are defined as the minimum set of 

variables whose knowledge completely defines any other 

quantity in the instrumentation channel. The model of the 

instrumentation channel is shown in Figure 2. The state of 

the instrumentation channel is: 

  1 2 3 4 1 2 3x [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ]) p m L L Ltt v t v t v t v t e t i t i t i t i t i t

 
Figure 2: Equivalent circuit of current instrumentation channel 

 

In a current instrumentation channel one measurement is 

taken, the current through the burden or the voltage across 

the burden. In addition, by considering the physical laws 

that the instrumentation channel must obey, we identify a 

number of virtual and derived measurements. Finally the 

ground point voltage is unknown (and difficult to measure). 

Since the voltage at the ground point is expected to be near 

zero, we introduce a pseudo-measurement for this point. 

The actual, virtual, derived and pseudo measurements are 

provided next. 

 

Actual Measurements (1): 
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KCL at node 2 yields: 
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KVL loop: node 1 to transformer to node 2, yields: 
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KVL loop: node 3 to node 1, yields: 
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KVL loop: node 2 to node 4, yields: 
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KCL at node 3 yields: 
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KCL at node 4 yields: 
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Transformer magnetizing leg yields: 
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Use as an example  n=11. In this case (odd n) the above 

simplifies to: 
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Derived Measurements (5): 
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Pseudo Measurement, node 4 is grounded (1): 

40 ( )m v t

 

There are 1+10+5+1=17 measurements. The number of 

states is 11.  

Observe that one equation is nonlinear (exponent of 11). 

This equation is quadratized to yield the following 

quadratized measurement models. Additional variables 

1 2 3 4y y y y  are introduced to decrease the order of each 

equation to 2. 
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Now there are 1+14+5+1=21 measurements in the quadratized 

model. The number of states is 15. The state vector is
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Note that there is a redundancy of measurements over the 

state vector of 6. 

Subsequently the dynamic state estimation is applied using the 

above measurement model. The dynamic state estimation is an 

optimization problem which minimizes the differences 

between measurements and the values of the measurements 

obtained from the model. The solution of the optimization 

problem provides the best estimate of the state vector from the 

measurements. The dynamic state estimation is provided in the 

next section. 

 

The measurements are stacked together and are written in a 

common syntax, which is referred to as dynamic 

quadratized measurement model. The presented quadratized 

measurement dynamic models are shown in the following 

matrix notation: 

,
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x
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Where: tz( )  is the measurement vector (actual, derived, 

pseudo and virtual measurements), ( )tx is the state variable 

vector, m,xY  is the matrix defining the linear part for state 

variables, m,xD  is matrix defining the differential part for 

state variables, mC is the constant vector of the 

measurement model, m,xF  is the matrix defining the 

quadratic terms, and η is the error vector. 

 

A. Dynamic AQCF Measurement Model: Quadratic 

integration method is used to convert the dynamic 

measurement model to algebraic form, which is referred as 

Algebraic Quadratic Companion Form (AQCF) 

measurement model [14]. The quadratic integration is based 

on a numerical integration method that assumes that time 

domain functions vary quadratically within an integration 

time step. The integration links the values of the state and 

measurements at time stamp t, t-h, and mt  (intermediate 

time stamp of t  and t h ). The quadratic integration 

method is an implicit numerical integration and therefore 

demonstrates the desired advanced numerical stability 

properties compared to explicit methods [15]. The resultant 

mathematical model of the measurements is: 
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where  ( )mt,tz  is the measurement at two adjacent time 

instances time   t and time  mt . zY is linear term coefficient 

matrix, zF is quadratic term coefficient matrix, zN is past 

history linear term coefficient matrix, zM  is past history 

current term coefficient matrix, zK is past history constant 

vectors and zη is error vectors. Note that the sample values 

are taken at 80 samples per cycle, the integration time step h 

is two sampling periods, i.e. 416.666 microseconds. 
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DYNAMIC STATE ESTIMATION METHOD 

The dynamic state estimation provides the best estimate of 

the states from the measurements, in this case redundant 

measurements. Considering the measurement model 

provided earlier, it is clear that each measurement, at time t 

or time tm is given as a function of the state and some 

unknown measurement error (note the state at time t-h is 

assumed known from past computations), i.e. 

 

    , , , 1, 2, 3,....,i m i m iz t t h x t t i m  
 

 

Where: m is the total number of measurements, 
iz is the 

measurement i , (x)ih is the equation expressing the 

measurement i  as a function of the state x , and 
i is the 

measurement error with the following statistics:  

 

   2[ ] 0, , 0i i i i jE Var E          

Where i is the standard deviation of the corresponding 

measurement 
iz . The value of i for actual, derived, 

virtual, and pseudo measurement is 0.05% p.u., 0.05% p.u., 

0.005% p.u. and 10% p.u., respectively. 

 

The state estimation problem can be solved with the WLS 

(Weighted Least Squares) method which is defined with: 
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T
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Where the weight matrix 
2

1
( , , )

i
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

     W .  

The best estimate of the state is obtained from the Gauss-

Newton iterative algorithm: 
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x x H WH H W z h  

 

where ˆ( )mt,tx refers to the best estimate of the state vector 

( )mt,tx , and ( ( )) / ( )m mt,t t,t  H h x x  is the Jacobean 

matrix of the measurement equations. 

 

The normalized residuals ˆ( ) ( ( ) ( ))m m mt,t t,t t,tr W z - h(x  

are computed at the solution ˆ( )mt,tx . Subsequently, the 

confidence level ( )confP t , which expresses the probability of 

goodness of fit between measurements and dynamic model 

within meter accuracy, is computed from the normalized 

residuals: 

( ) ( ) ( )T

m mt t,t t,t  r r  

 

2( ) Pr ( ) 1 P( ( ), )confP t t t v         

 

where  P( ( ), )t v  ) is the probability of χ2 distribution 

given 
2 ( )t   with degrees of freedom v m n  . 

 

IMPORTANCE OF INTRUMENTATION CHANNEL MATH 

MODEL 

The presented method requires a high fidelity model of the 

instrumentation channel including the CT model. Models 

for the cables, merging unit burden and A/D conversion are 

well known. Deriving a high fidelity model of the CT is 

typically challenging but it is doable. We developed a 

method to derive the model of the CT from manufacturer 

data as well as manufacturer test data. The method has been 

tested in the laboratory and the results are quite accurate 

between the model and test results. The method with 

performance analysis is shown in Appendix A. Note that the 

CT model utilized in the previous section is the one 

presented in Appendix A. The model is accurate for low 

frequencies, typically, zero to 1000 Hz.  

 

EXAMPLE RESULTS 

An example test system is utilized to model instrumentation 

channels and merging units to create simulated data of 

primary currents and measured values at the merging units. 

Subsequently, the measured values at the merging unit are 

used in the dynamic state estimation to provide the best 

estimate of primary current. Since the primary current is 

known form the simulation, the absolute error of the method 

can be computed, thus providing and excellent measure of 

performance of the proposed method. 

The example test system is presented in Figure 3. It 

comprises a 115-kV transmission system. A current 

transformer measures phase A current of the line that is 

located on the left hand side of the figure. The CT ratio is 

800:5A, and the error class for the CT is 10C100. The 

instrumentation cable is #10 cable with the length 96 

meters. The burden resistance is 0.1 Ω.  

 

 
Fig. 3   Example system for current instrumentation channel error 

correction 

 

Event 1: Low CT saturation: A phase A to ground fault at 

bus MID (middle of figure 3) was simulated. This fault 

yields fault current that causes low CT saturation of the 

instrumentation channel. The merging unit measures the CT 

secondary current through the burden resistor, as shown in 
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Figure 4. It can be seen in Figure 4 that the CT secondary 

current is moderately distorted. 

 

 
 

Figure 4: CT secondary current through the burden resistor 

 

Application of the current instrumentation channel error 

correction algorithm provides the best estimate of the CT 

primary current. Figure 5, top set of traces, provides a graph 

of the estimated primary current, the actual primary current 

and the primary current computed by simply multiplying the 

measurement secondary current time the transformation 

ratio. The last quantity is referred to as “Ratio*CT 

Secondary Current”. Note a sizable difference between the 

last quantity and the actual primary current. On the other 

hand the estimated primary current tracks very well the 

actual primary current. The bottom set of traces of Figure 5 

provides the error between the uncorrected primary current 

and the actual primary current as well as the error between 

the estimated and actual primary current. Note that without 

error correction the error reaches 50% while with error 

correction the error is below 1%. 

 

 

Figure 5: Comparison between the CT primary current before and after 
correction  

Event 2: Deep CT Saturation: A phase A to phase C fault 
at bus MID (middle of figure 3) was simulated. This fault 
yields fault current that causes high CT saturation of the 
instrumentation channel. The merging unit measures the CT 
secondary current through the burden resistor, as shown in 
Figure 6. It can be seen in Figure 6 that the CT secondary 
current is highly distorted. 

 

Figure 6: CT secondary current through the burden resistor 

 

Application of the current instrumentation channel error 

correction algorithm provides the best estimate of the CT 

primary current. Figure 7, top set of traces, provides a graph 

of the estimated primary current, the actual primary current 

and the primary current computed by simply multiplying the 

measurement secondary current time the transformation 

ratio. The last quantity is referred to as “Ratio*CT 

Secondary Current”. Note a large difference between the 

last quantity and the actual primary current. On the other 

hand the estimated primary current tracks very well the 

actual primary current. The bottom set of traces of Figure 5 

provides the error between the uncorrected primary current 

and the actual primary current as well as the error between 

the estimated and actual primary current. Note that without 

error correction the error exceeds 200% while with error 

correction the error is below 2.5%. 

 

 
 

Figure 7: Comparison between the CT primary current before and after 
correction  

CONCLUSIONS 

This paper proposes an on-line current instrumentation 

channel error correction method using dynamic state 

estimation. The method can be integrated with the merging 

units so that they directly provide corrected values of the 

primary quantities. The method has been demonstrated on 

current instrumentation channels. It can reliably reproduce 

the primary current under various saturation conditions of the 

CT. The computation of the method can be performed within 

a fraction of one sampling interval of merging units. This 

118.5 A

-105.3 A

I_CT_SEC (A)

26.51 ms 77.70 ms

302.9 A

-182.7 A

I_CT_SEC (A)

26.98 ms 77.82 ms
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additional latency does not cause any problems in the 

streaming of the data from the merging units. The method 

can be applied equally well on voltage instrumentation 

channels. 
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APPENDIX A: CURRENT TRANFORMER MODEL 

CONSTRUCTION 

The parameters of a CT non-linear dynamic model can be 

obtained by measuring the RMS current at the CT secondary 

winding for various voltages applied across the CT secondary. 

The test circuit is illustrated in Figure A-1.  In order to 

evaluate the measurement procedure, a 200:5 low accuracy CT 

was characterized using this setup.  The voltage across the CT 

secondary was varied from 50 mV to 10 Volts RMS.  The 

measured secondary RMS current versus secondary RMS 

voltage were directly obtained using the oscilloscope 

waveform analysis functions.  The applied voltage range was 

selected so that both linear and saturation regions of the CT 

are captured. The measured data were plotted on logarithmic 

scale making sure that the decade lengths on the vertical and 

horizontal axis are equal.  Then a 45-degree tangent line was 

drawn identifying the saturation point at 3 Volts and 173 mA 

RMS, see Figure A-2.  Next, an impedance bridge was used to 

measure the secondary DC Resistance.  The result was 41 

milli-Ohms.  The test data were used to set the WinIGS model 

parameters.  Specifically, the slope of the VI curve in the 

saturation region was used to set the model saturation equation 

exponent (n).  Then, the magnetizing current and core 

conductance model parameters were adjusted so that the 

calculated VI curve closely matches the curve obtained from 

measurements.  The final selected parameters and computed 

VI curve, are illustrated in Figure A-3.   

 

 
 

Figure A-1: CT Saturation Test Circuit 

 

Next, the same CT was tested and simulated under sever 

saturation in order to evaluate the model accuracy. The test 

setup is illustrated in Figure A-4.  The CT primary current was 

198 A at 60 Hz (peak value 280 A), with a 2 Ohm Burden 

connected at the secondary (the values were so selected as to 

drive the CT into saturation).  Under these conditions, the 

secondary current was measured at 3.37 Amperes.  Note that 

this value is 28% lower than value obtained by multiplying the 

primary current by the nominal CT ratio (198 x 5 / 200 = 4.95 

A).  The simulation results are illustrated in Figure A-5.  The 

test results are shown in Figure A-4.  Note that the simulated 

secondary current (burden current trace) is 3.57 Amperes. 

These measurements were compared to the values provided by 

the model and the match is excellent. 
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Figure A-2: CT Saturation Curve as determined by Test 

 

 
 

Figure A-3: CT Model Parameters 

 

 
 

Figure A-4:  Measured CT Secondary Voltage Waveform 

 
 

Figure A-5:  Measured CT Secondary Voltage Waveform 
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