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Abstract—As power quality becomes a higher priority in the
electric utility industry, the amount of disturbance event data
continues to grow. Utilities simply do not have the required
personnel to analyze each event by-hand. This work presents
an automated approach for the analysis of power quality events
recorded by digital fault recorders and power quality monitors
operating within a power transmission system. The automated
approach leverages rule-based analytics to examine the time
and frequency domain characteristics of the voltage and cur-
rent signals, and customizable thresholds are set to categorize
each disturbance event. The events analyzed within this work
include: various faults, motor starting, and incipient instrument
transformer failure. Analytics for fourteen different event types
have been developed. The analytics were tested on 160 signal files
and yielded an average accuracy of 99%. Continuous, nominal
signal data analysis is performed using an approach coined as the
cyclic histogram. The cyclic histogram process will be integrated
into the digital fault recorders themselves to facilitate detection of
subtle signal variations that are too small to trigger a disturbance
event and that can occur over the course of hours or days.
In addition to reducing memory requirements by a factor of
320, it is anticipated that cyclic histogram processing will aid in
identification of incipient events and identifiers. This project is
expected to save engineers time by automating the classification
of disturbance events as well as increase the reliability of the
transmission system by providing near real–time detection and
identification of disturbances as well as prevention of problems
before they occur.

Index Terms—Digital Fault Recorder (DFR), Power Quality
(PQ), Electrical Disturbance, Identification, Machine Learning

I. INTRODUCTION

The continued and increasing deployment of “smart” de-
vices (e.g., switches, relays, etc.) within power utility gen-
eration, transmission, and distribution infrastructure has led
to the recording and storage of an ever-growing amount of
event data. Processing and analysis of this event data has been
traditionally conducted by power utility personnel using “by-
hand” approaches. By-hand approaches rely heavily upon the
knowledge, experience, and expertise of the person or persons
conducting the analysis and severely limits the number of
events that can be analyzed within a given period of time.
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These limitations are exacerbated when considering that: (i)
power utilities are unable to dedicate personnel solely to the
task of event processing and analysis as well as (ii) that
analysis is often conducted hours if not days after the event
has occurred, thus limiting its value.

The work in [1] details a rule-based approach for cate-
gorizing Power Quality (PQ) events using the S Transform
(ST). The data used in this approach is a mix of simulated
data and real-world data from the power system. The Fourier
Transform (FT) and the Short-Time Fourier Transform (STFT)
have not proven to be effective in extracting unique features
of each signal. The Wavelet Transform (WT) has been used
as it can extract time and frequency domain characteristics
simultaneously, but it is also somewhat vulnerable to noise
and computationally expensive. The ST can be thought of as
a hybrid between the STFT and WT since it has the time and
frequency domain characteristics, but it also uses a variable
window length to provide information at different resolutions.
The ST has been shown to provide better noise immunity.
Finally, categorization of the PQ events was performed using
Artificial Neural Networks (ANNs), fuzzy logic, decision
trees, and others. The ST contours highlight the distinctive
features present within the original PQ event signal, such as a
voltage sag. A set of rules is then defined to set the thresholds
needed to trigger certain event types. These rules rely heavily
upon the knowledge of PQ experts and a data set containing
distorted signals is used to determine the corresponding thresh-
old values. The rules are designed to separate the events into
three categories: magnitude disturbances, transients, and signal
distortion. The tests performed on the signals include positive
tests and negative tests for an extra layer of classification.
This approach is also very portable to other applications due
to normalization of the voltage, which facilitates the use of
any voltage level. The results of the work in [1] heavily
favor the rule-based ST approach. This approach classified
the disturbances with 98% accuracy while a traditional ANN
method achieved an accuracy of 92%. The rule-based method
can also withstand a considerable level of noise in the signal.
One reason for this superior accuracy is that the rule-based
approach is more specialized to each type of disturbance than



the ANN approach.
The approach in [2] used a machine learning approach that

is augmented through the inclusion of the Kullback–Leibler
(KL) divergence measure and standard deviation. The KL
divergence is very efficient as it can be applied to a single cycle
of the signal. The KL divergence calculates the probabilities
that a particular cycle is a member of two or more events.
Standard deviation is also used as it is very effective in the
detection of PQ disturbances. These two methods are used for
each cycle of the disturbed signal and compared with an ideal
sinusoidal signal to capture the disturbance. After the detection
phase, the classification phase is performed using a Support
Vector Machine (SVM) to determine a decision boundary
between event types. This method proved very effective in
differentiating between events such as voltage sag and swell.
However, voltage flicker and swell are more similar than sag
and swell, so this approach likely will not function as well.
Overall, this method achieved an accuracy of 94.02%.

The approach in [3] provides a novel PQ disturbance
classification method. The method extracts features from the
cross-correlogram of the PQ disturbances. The positive peak
and two adjacent negative peaks are used as the classification
features. Those three values are then fed into a fuzzy-based
classification system. One drawback to the work in [3] is its
use of simulated data, thus classification accuracy may change
when real-world data are used. The two types of correlation
are cross-correlation and auto-correlation. Cross-correlation
measures the strength of similarity between two signals, while
auto-correlation is the cross-correlation of a signal with itself.
The work in [3] calculates the cross-correlation response
between an ideal signal with a disturbed one to detect the
disturbance. A fuzzy logic classifier is used to allow for
uncertainty in a logic system. The rules in the fuzzy system
are designed by human experts, so the system is only as good
as those who designed it. The system used in this approach is
the Mamdani-type inference system with three inputs and one
output. Eighteen linguistic variables are used for the output
membership function to determine the PQ event classification.
This classifier was tested using seventy generated signals and
achieved an accuracy of 100%. The accuracy remained 100%
even when noise was added to the test signals.

The work presented herein uses a series of algorithms
developed in a programming platform that classify various PQ
events into one or more categories. The developed algorithms
are rule-based in nature with customizable thresholds based on
engineers’ expertise. Each PQ event’s signal data are stored
in a Comma Separated Values (CSV) file–generated by the
field device–containing: a time vector, three voltage phases,
and three current phases. An executable file is initiated to read
each CSV file into a working directory then categorize them as
a particular PQ event type or types. The latter accounts for the
case of multiple PQ event types occurring and being recorded
within the same CSV file. A CSV file is then generated with
the classification results as well as analytic outputs such as
current magnitude. Below are several differentiating factors
that make the presented work unique and preferable to other

methods:

• The automated process was developed and tested using
real-world data rather than simulated data. All data were
recorded by smart field devices–PQ monitors and Digital
Fault Recorders (DFRs)–operating in a high-voltage trans-
mission system.

• The rule-based methods mimic the expertise of an engineer
in an effort to ease interpretation and understanding of the
classification results by power system personnel.

• The developed process uses very few functions specific to
any particular programming platform. This reduces the need
for expensive licenses while allowing the algorithms to be
translated into other programming languages and software
based upon the specific needs of the power utility. This
approach is adopted to facilitate widespread use of the
developed algorithms across the power industry.

• The rule-based nature of the developed process allows every
threshold to be changed as needed by power utility personnel
based on performance or system specifics. In this paper,
empirical thresholds are designated as τ in equations and as
bold lettering in sentences.

• The methods used are very detailed and will predict the
actual disturbance (e.g., ferroresonance) that occurred on
the power system rather than simple signal characteristics
like voltage sag and swell.

Another aspect of the project was to analyze continuous
oscillography data that is stored on the DFRs. Each day of
data can be as much as twenty to fifty gigabytes (GB), which
is far too much data for an engineer to analyze manually.
Due to on-board memory constraints, each DFR stores two
weeks of continuous oscillography data before it is overwrit-
ten. The approach in this work uses a method known as a
cyclic histogram [4] to reduce an average day’s thirty-five GB
worth of continuous oscillography data down to seventy-two
megabytes (MB). This memory reduction not only increases
the time window of how long the data can be stored–from two
to roughly 1,000 weeks–but also allows engineers to monitor
for trends and subtle deviations in continuous signal data that
has not produced a disturbance large enough to trigger a DFR
event.

The remainder of this paper is as follows. Section II presents
the methodology including general calculations, continuous
waveform analysis, and the various disturbance event types.
Section III provides the results of each event type and contin-
uous waveform analysis. Section IV provides a summary and
lists some opportunities for future work.

II. METHODOLOGY

This section first presents descriptions of calculations, anal-
yses, and tests that are used in the categorization of multiple
events. A specific event may require the threshold of one
or more of these general calculations, analyses, or tests to
be changed and are detailed under the specific event be-
ing categorized. The remainder of this section describes the
methodologies developed and employed for the categorization



of specific events and continuous signal processing using the
cyclic histogram.

A. General Calculations, Analyses, and Tests

1) Calculating Nominal Values: The first task in the pro-
cessing of a voltage or current signal is to calculate nominal
values from the data itself. The sampling frequency is calcu-
lated by,

Fs =
N

te − t1
, (1)

where Fs is the sampling frequency in Hertz (Hz), N is the
number of samples in the time vector, and t1 and te are the
first and last values of the time vector, respectively. After the
sampling frequency is known, the nominal number of samples
in each cycle is determined by,

Nc =
Fs

Fn
, (2)

where Nc represents the number of samples per cycle, Fs is
the sampling frequency, and Fn is the nominal frequency of
the power system, which is assumed to be 60 Hz.

Generally, PQ event records capture several cycles of the
voltage or current signal that occur before a disturbance
begins. The DFRs that recorded the data used in this work
are normally set to record fifteen cycles of data before a
disturbance. The nominal peak values of voltage and current
signals are determined using these “pre-event” cycles for
each processed signal. For this work, the first cycle in the
event record is used to determine these nominal scalar values
denoted as: (i) V̂q for nominal peak voltage, (ii) Îq for nominal
peak current, (iii) V̄q for nominal Root Mean Square (RMS)
voltage, and (iv) Īq for nominal RMS current. The magnitudes
of voltage and current signals are compared to these nominal
values to normalize the data with respect to the particular
voltage or current level of the power system. This allows for
more flexibility for these tools to be used at a different scale
on the system.

2) Root Mean Square: The RMS of a signal is another
characteristic used in the classification of electrical disturbance
events. A signal’s RMS is given by,

x̄ =

√√√√ 1

Nw

Nw∑
i=1

|x[i]|2, (3)

where x is the analog signal, Nw is the size of the RMS
window, and x̄ is the RMS calculation of the analog signal [5].
Unless otherwise stated, the size of the RMS window was set
at the nominal number of samples in each cycle, Nc.

One use of RMS is in determining if the signal value is non-
zero. In the instantaneous case, the sinusoidal signal will cross
zero every half-cycle, so it is more difficult to tell whether the
value remains near zero. A signal’s RMS is used in events
such as motor starting where the current increases over time.

0 20 40 60 80 100 120 140

Time (ms)

-2.5

-2

-1.5

-1

-0.5

0

0.5

C
u
rr

e
n
t 
(k

A
)

Current

Fault Inception

Fig. 1: Fuse fault showing second derivative test

3) Differentiation: One of the most common calculations
used is a signal’s derivative. The equation in (4) represents the
first derivative with respect to the number of samples.

A positive first derivative indicates that the signal is in-
creasing, and a negative first derivative indicates the signal is
decreasing. This fact is used to detect the presence of peaks or
spikes within a signal. The maximum or minimum of a peak
or spike corresponds to the first derivative changing sign (i.e.,
going from positive to negative or vice versa). A change in
the first derivative’s sign is calculated by,

x′(n1)× x′(n2) < 0 (4)

where x′ is the first derivative of the analog signal, n1 is the
sample before the first derivative’s sign changes, and n2 is the
sample after the sign changes. Multiple sign changes over a
short time interval provide a strong indication that a transient
disturbance is present within the signal being processed.

The second derivative is used to determine the change in the
slope of the curve. A sudden increase in the second derivative
shows as a sudden increase in slope and can indicate the point
at which a fault begins. Fig. 1 provides a representative illus-
tration showing the use of the second derivative in determining
the start of a fuse fault. The red circle shown is where the
second derivative is higher than an empirical threshold, thus
indicating a sudden increase in the slope of the curve. The third
derivative is used to detect a shift in the slope of a curve.

4) Harmonic Ratios: Harmonics can be key indicators of
particular events within a transmission system (e.g., current
transformer saturation, harmonic resonance, etc.). Harmonic
analysis is facilitated through the calculation of the harmonic
ratio, which is useful in determining the dominant frequency
components within a signal. The nth harmonic ratio is calcu-
lated by,

Hn =
|Xn|
|X1|

, (5)

where X is the Fast Fourier Transform (FFT) of x, |X1| is
the magnitude of the fundamental frequency (i.e., 60 Hz), and



|Xn| is the magnitude of the nth multiple of the fundamental
frequency [6].

5) First Cycle Comparison: The CSV files generally store
at least fifteen cycles of the voltage and current signals that
occur prior to the disturbance event, thus a useful disturbance
detection approach is to compare the signal’s first cycle with
each of its remaining cycles within the CSV file. After the
first cycle is selected, it is replicated to construct an ideal
signal that is of the same length as that of the recorded signal
from which the first cycle was extracted. The generated ideal
signal is then subtracted from the recorded signal. The time
indices where this difference is very high indicates the start of
a disturbance. Fig. 2 illustrates the application of this approach
in detecting the start of a capacitor switching event within a
recorded voltage signal. Fig. 2 shows the voltage signal with
the capacitor switching disturbance portion of the signal high-
lighted and the result of the difference calculation overlaid.
Where the difference calculation is highest corresponds with
the start of the capacitor switching event, which is assigned a
start time of zero milliseconds.

B. Continuous Signal Processing

In addition to disturbance event classification, this work
makes use of the cyclic histogram in an attempt to reduce
the memory storage requirements associated with a DFR’s
continuously recorded signal data. This work extends the
cyclic histogram by also generating the residual and frequency
histograms. The cyclic histogram was first proposed in [4] to
significantly reduce the size of continuously recorded oscil-
lography data. This reduction in size allows for data to be
stored for much longer than the oscillography (OSG) file, and
allows for PQ analysts to pull data from each DFR without
putting strain on the telecommunications network. A script
was created to perform the following tasks:
• Read the most recent configuration (CFG) file and extract

the necessary data to read and correctly interpret the match-
ing OSG file.
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Fig. 2: Voltage signal showing disturbance during capacitor
switching.

• Time-synchronize each cycle reliably to generate the cyclic
and residual histograms.

• Perform a custom “maximum frequency” calculation is
developed to generate the frequency histogram that is faster
and less computationally intense than traditional FFT pro-
cessing.

• Generate six CSV files. For each of the three histogram
types, there is a CSV that contains the histogram and any
accompanying metadata file that stores the bin values and
record dates.
Signals are analyzed based on a sine representation, thus

the continuous signal data are processed using a negative-
to-positive transition in the cycle. This negative-to-positive
transition is designated the beginning and end of each cycle.
This helps in cases of signal disturbance as the disturbance
is typically a magnitude disturbance and not additive. Current
signal cyclic histograms are not generated due to transformers’
inductive nature, which affects current and causes its sinu-
soidal activity to become negatively impacted to the point
where cyclic analysis is not possible. Voltage is source driven,
thus making it less susceptible to drift.

The most recent CFG file is loaded and the OSG meta-
data extracted. The OSG metadata provides the: number of
channels, sampling rate, and timestamp in accordance with
IEEE COMmon format for TRAnsient Data Exchange (COM-
TRADE) Standard 2013 [7].

1) Time Synchronization: Due to the physical properties of
the transmitted voltage, the signal is never exactly 60 Hz and
the sampling Data Acquisition (DAQ) device will never sample
the signal at the exact point of x(t) = 0. At the transformer, the
frequency can drift by as much as ±0.03 Hz, so the exact time
in between cycles is not consistent. Due to this inconsistency,
the position of x(t) = 0 must be estimated to synchronize each
cycle before generating the cyclic histogram. If this frequency
drift is not taken into account, then it is impossible to generate
the cyclic histogram for one hour of continuous oscillogra-
phy data. Each cycle is detected by finding two consecutive
negative-to-positive transitions in the sampled waveform x[n].
A window is collected starting with the sample before the first
transition, and the sample directly after the second transition
and then processed for time synchronization. An ideal time
vector tI is created as a reference where t ∈ [0, 1/Fn] in
steps of ∆t. A relative time tr vector is generated based on
the slope estimated from the windowed signal. The first slope
is,

m1 =
x[2]− x[1]

∆t
, and b1 = x[2]−m1t[2], (6)

where m1 is the slope between the first two sampled points
and b1 is the estimated position of the first zero-crossing. The
first entry of the relative time vector is,

tr[1] = tI [1] +
b1
m1

. (7)

The end of the windowed signal is used to find the second
slope characteristics,

m1 =
x[Nc + 1]− x[Nc]

∆t
, b2 = x[Nc]−m2 ∗ tI [Nc]. (8)



The last entry of the relative time vector is,

tr[Nc + 1] = tI [Nc]−
(
−b2
m2

− 1

Fn

)
. (9)

The rest of the relative time vector is,

∆tr =
tr[Nc + 1]− tr[1]

Nc + 1
. (10)

Now that the relative time vector has been calculated, the
values of x(t) = 0 lines up with tr = [0, 1/Fn]. Linear
interpolation is used to generate a representation of the sam-
pled waveform x[n] from the relative tr and synchronize it
onto the ideal time vector tI . Once a cycle has been collected
and synchronized, it is then stored to generate the cyclic and
residual histograms.

2) Histogram Generation: The cyclic histogram is a com-
bination of per-sample histograms concatenated to show the
quality of the signal over time. For the case of Nc = 16,
sixteen histograms are generated for each sample in the
nominal cycle and stored in a matrix that represents the
cyclic histogram. The global minimum and maximum of all
of the synchronized cycles are used as the bin limits of
all histograms to maintain a consistent scale for the cyclic
histogram. Each histogram is generated using the nth sample
of each of the synchronized cycles. By default, there are 1,024
bins per histogram, but this resolution can be increased or
decreased as desired by utility personnel. A large number of
bins will increase the size of the generated, output file. The
cyclic histogram is generally unexciting as seen in Fig. 20. A
residual histogram is generated by subtracting the first cycle
from the remaining cycles in the record. Subtracting the first
cycle accentuates any abnormal behavior(s) present within
the processed signal at a per cycle resolution. The residual
histogram–corresponding to the cyclic histogram in Fig. 20–is
presented in Fig. 21. The voltage in Fig. 20 is within the range
of approximately ±135 kV while the voltage range is ±4 kV
in the residual histogram of Fig. 21. This is almost a 40-times
increase in activity resolution for no additional data cost.

3) Frequency Histograms: The dominant frequency is cal-
culated using the FFT. Typically, the FFT is calculated over all
frequencies within the range of ±Fs/2. Calculating the FFT
over this entire range of frequencies is inefficient, because
the power grid’s frequency is very stable with an expected
maximum deviation of ±0.03 Hz with respect to the 60 Hz
fundamental frequency. Based upon a sampling frequency of
960 Hz, a high resolution (i.e., a small step size between con-
secutive frequency values) frequency representation requires a
significant number of zeros (e.g., 1.2 million) to be appended
to the end of the time signal. Since the power grid’s frequency
is so stable, most of the actionable information is contained
within a very small range of frequencies, thus most of the
resulting frequency response can be “thrown out” without loss
of information. Zero padding the time signal–only to remove
most of the resulting frequency response–represents a waste of
computational resources and time. This problem is addressed
by generating a support vector of frequencies centered at 60 Hz

and with a Proccess BandWidth (PBW) of 0.2 Hz. The PBW
can be changed based upon the specifics of: the DFR or
equivalent device as well as utility personnel preferences or
standards. The DFT of sixty cycles is calculated for only the
frequencies specified in the support vector and a step size of
thirty cycles between consecutive calculations. This results in
the dominant frequency being calculated per second with an
overlap of half a second. The DFT is calculated by,

X[f ] =

Nx∑
n=1

x[n] exp [−j2πft[n]], (11)

where

f ∈
[
Fn ± PBW

2

]
,

and Nx is the total number of samples in the waveform over
which the DFT is calculated [8]. The dominant frequency is
selected by,

Fd(t) = argmax
f

|X[f ]|. (12)

The output of the dominant frequency is calculated for a
sliding 60-cycle window of the recorded waveform and is
stored and used to generate the frequency histogram. The
support of the histogram is the same vector as the PBW
calculated in the DFT. The number of cycles per evaluation
can be adjusted in the head of the code.

The particular programming platform used allows for Just-
In-Time (JIT) run-time compilation directly into machine
code. Currently, JIT does not support the FFT algorithm;
however, it does support the calculation of the described,
custom DFT. The result is not only faster, but requires far
fewer computational resources and time than the zero-padded
FFT.

C. Event Types

1) Current Transformer Saturation: The first PQ event
analyzed is Current Transformer (CT) saturation. A CT is
commonly used in relaying or metering applications in high-
voltage circuits by producing an alternating current in its
secondary winding that is proportional to the current that it
is measuring on the high-voltage system. These low-voltage,
low magnitude currents are then used as input signals to
various instrumentation [9]. CT saturation occurs when the
primary current is so high that its core cannot handle any
more flux. This results in inaccurate replication of the current
signal on the secondary winding, which can cause protection
relays to operate improperly. A key indicator of CT saturation
is a change of slope as the current crosses zero each half-
cycle. This change in slope is commonly referred to as “knee-
ing”. Fig. 3 shows a representative illustration of “kneeing”–
between 280 ms and 320 ms–within a CT’s current signal.

In this work, the following criteria are used to determine
the occurrence of CT saturation. These criteria are: (i) current
exceeding fifteen times the continuous current rating of the
CT, (ii) presence of DC offset, (iii) the DC offset returning
to normal (i.e., 0 Hz) during the fault, (iii) inconsistent
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Fig. 3: A representative illustration of “kneeing” within a
current signal during a CT saturation event.

spacing between zero crossings, (iv) high third derivative of
the current, (v) high second harmonic current, and (vi) high
third harmonic within the current. A mix of these criteria are
used to determine the likelihood of CT saturation as described
at the end of this section.

The first step is to determine the presence of a fault or not.
Processing continues if a fault is detected and moves to the
next event otherwise. For the purposes of this work, a fault
means that an abnormal flow of current has occurred causing
the protective relay(s) to operate and trip the breaker(s). The
presence of a fault is determined using the CT ratio defined
in the COMTRADE configuration file. The CT ratio is,

RCT =
IP
IS

, (13)

where RCT is the turns ratio of the CT, IP is the rated
continuous primary current, and IS is the rated continuous
secondary current. The CTs in this work used a continuous
rated current of 5 Amperes (A) on the secondary side of the
CT. For instance, if the CT ratio RCT = 240, then the rated
continuous current would be 1,200 A on the primary side and
5 A on the secondary side.

If the current exceeds fifteen times the continuous current
rating of the CT, then a detected fault is high enough to
be CT saturation. This threshold was selected based upon
recommendations of PQ engineers to ensure only abnormally
high faults are selected since extremely high currents are
generally indicative of CT saturation. Faults that do not meet
this threshold will have a lower chance of being CT saturation.
The threshold is given by,

I(n)

IP
> τCT, (14)

where I is the instantaneous current being analyzed, IP is
the rating of the CT on the primary side, τCT = 15 is
the CT saturation threshold, and n = 1, 2, . . . , N . The CT
saturation threshold was set based upon inputs from power
utility personnel, but can be changed based upon local criteria.

The presence of DC offset is also an indicator of CT
saturation [9]. For this particular event, DC offset is deter-
mined by first calculating the peak value of each cycle of the
faulted section of the waveform. The peaks of the positive
and negative half-cycles are then averaged together to give a
value for the offset above or below 0 A. If the maximum of
this value exceeds a threshold compared to the nominal peak
current, then DC offset is detected in the fault as given by,

|IDC|
Îq

> τDC, (15)

where IDC is the maximum DC offset detected during the fault,
Îq is the nominal peak current extracted from the first cycle,
and τDC = 3 is the empirically selected threshold for the ratio
of DC offset magnitude to nominal peak current. A loss of
DC offset is detected if the offset magnitude is lower at the
end of the fault than the beginning.

The number of samples between zero crossings is then
compared to half the nominal number of samples in each
cycle calculated using (2) as described in Sect. II-A1. The
zero crossing points are calculated as the indices at which
the waveform changes sign (i.e., from negative to positive
or vice versa). The number of samples between each zero
crossing is calculated for every cycle by subtracting the indices
accordingly. This number of samples is compared to the
nominal value and is given by,

max

∣∣∣∣NZ(k)−
Nc

2

∣∣∣∣ > τZ, k = (1, 2, 3, . . . , NF) (16)

where NZ is the number of samples between zero crossings,
Nc is the nominal number of samples in each cycle, k is
index of each cycle, NF is the total number of cycles in
the faulted portion of the waveform, and τZ = 10 is the
empirically selected threshold for the difference from nominal
in the number of zero crossings.

The “kneeing” present in the waveform is detected using a
third derivative test. The maximum third derivative present in
the first cycle of the waveform (i.e., before the fault) is used
as the nominal value. The maximum third derivative of the
faulted portion of the waveform is compared to the nominal
value and will be “flagged” if it exceeds a certain threshold
as given by,

max |I ′′′f (n)|
max |I ′′′c (n)|

> τD3 (17)

where I ′′′f (n) is the third derivative of the faulted current
waveform, I ′′′c (n) is the third derivative of the first cycle of
the current signal, and τD3 = 5 is the empirically selected
threshold for the ratio of the fault third derivative with the
nominal one.

Finally, the harmonic ratios of the entire current waveform
are calculated using equation (5) as described in Sect. II-A4.
A very good indicator of CT saturation is when the second and
third harmonic currents exceed the thresholds of 15% and 5%
of the fundamental, respectively.



All these criteria are combined to give a confidence level
for CT saturation as given by:

• High confidence: The thresholds are exceeded for the current
rating of the CT and the second harmonic current. The
thresholds must also be exceeded for three of the following:
DC offset, loss of DC offset, inconsistent spacing between
zero crossings, third derivative, or third harmonic current.

• Medium confidence: The threshold is exceeded for the
current rating of the CT, but the second harmonic threshold
is not exceeded. The thresholds must then be exceeded
for three of the following: DC offset, loss of DC offset,
inconsistent spacing between zero crossings, third derivative,
or third harmonic current.

• Low confidence: The threshold is exceeded for the current
rating of the CT, but the second harmonic threshold is not
exceeded. The thresholds must then be exceeded for two
of the following: DC offset, loss of DC offset, inconsistent
spacing between zero crossings, third derivative, or third
harmonic current.

• Low confidence (alternative): The threshold is not exceeded
for the current rating of the CT but is for the second and
third harmonics. The thresholds must then be exceeded for
two of the following: DC offset, loss of DC offset, incon-
sistent spacing between zero crossings, or third derivative.

2) Analog-to-Digital Converter Clipping: An analog-to-
digital (A/D) converter is a device that converts continuously
varying analog signals into a binary or digitized sequence.
Many electronic devices in substations (e.g., relays and DFRs)
utilize A/D converters to record voltage and current signals in
a binary format. The range of the digitized scale is restricted
by the power supply rail voltage. If the analog value results
in a digitized sequence that exceeds the rail voltage, then the
digitized sequence will appear “clipped” or “flat-topped” at
its minimum and maximum values. For substation devices,
clipping often appears in current signals during fault events.
This results in inaccurate replication of the current signals,
which can result in relaying mis-operation. Fig. 4 shows the
visible clipping at the minimum and maximum values of a
current signal’s digitized sequence.

Clipping is indicated by the repetition of equal magnitude
samples within the digitized sequence. First, the index of the
absolute maximum of the signal is calculated. The section of
the waveform ten samples before and ten samples after the
maximum is then extracted for analysis. If the first derivative
of this section of the signal is equal to zero for more than four
consecutive samples, then A/D converter clipping is present
within the signal.

3) Induced Transient Noise due to Switching: When high
voltage devices–such as air-break switches–are opened to de-
energize a bus section, the resulting arcing can induce high-
frequency noise upon the voltage or current signals of the elec-
tronic monitoring equipment (e.g., PQ monitor). Identification
of this induced transient noise is used to determine where
signal chokes may need to be installed or where shielding
and ground bonding integrity may need to be checked. Fig. 5
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Fig. 4: A representative current signal showing Analog-to-
Digital Converter (A/D) clipping.

provides a representative illustration of this transient noise
within a voltage signal.

This event is characterized by the presence of small random
spikes (i.e., noise) throughout the voltage or current signals.
Switching induced transient noise is identified by its: (i) over-
all difference from an ideal waveform, (ii) harmonic content
below 5% of the fundamental, (iii) sudden spikes determined
by the first derivative exceeding 10% of the nominal peak
value, (iv) persistence over five cycles or more, (v) occurrence
averaging once per cycle, (vi) instances totaling twenty or
more, and (vii) presence causing individual sample values to
exceed the nominal peak signal value occurring at least five
times.

The first criterion is determined using the approach de-
scribed in Sect. II-A5 in which a voltage signal is compared
to a reference signal, which is made up of replications of the
first cycle. The condition in which the difference between the
actual voltage and the reference voltage exceeds a threshold
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Fig. 5: A representative voltage signal showing transient noise
due to switching.
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Fig. 6: A representation of the case in which the voltage signal
does decay sufficiently prior to a successful reclosing operation
in the presence of a tapped motor load.

is given by,
V̄∆

N
> τN (18)

where V̄∆ is the mean value of the voltage difference between
the actual and ideal signals, N is the total number of samples
in the waveform, and τN = 30 is the empirically chosen thresh-
old for this ratio. If the first six criteria are met, then induced
transient switching is classified with medium confidence. If all
seven criteria are met, then this event type is classified with
high confidence.

4) High-Speed Reclosing with Tapped Motor Loads: A
common practice is to employ high-speed instantaneous re-
closing on faulted transmission lines. Sometimes there may be
large or significant motor load served from stations tapped on
the line. For this work, a motor load is considered significant if
it is directly served from a high-voltage transmission line (e.g.,
161 kV). In such cases, the line voltage may be supported
by the motors–as they spin down–so that residual voltage
remains on the line by the time of a high-speed breaker reclose
operation. The residual voltage may require up to five seconds
to decay in large machines [10]. Since this residual voltage is
unlikely to be in phase with the system voltage, the result can
be a failed reclose attempt by the line breakers as well as
damage to the motors. Thus, it is important to identify lines
where high-speed reclosing needs to be delayed to allow the
voltage to sufficiently decay before carrying out the reclosing
operation. Fig. 6 shows a voltage signal in which sufficient
time has passed to allow the voltage signal to decay to a
point after which the reclosing operation was successfully
completed.

For identification of this event, it must be determined
whether the reclosing operation is a high-speed reclosing op-
eration. For this work, the reclosing operation is a high-speed
one if it is “blind” (i.e., without any supervision or checks) and
occurs within thirty cycles of the initial current interruption by
the breaker [10]. Identification of the reclosing with tapped

motor loads is achieved by determining the sample points at
which the: (i) voltage signal begins to decay, (ii) voltage signal
reaches zero, and (iii) reclosing operation occurred. The time
between these three points determines whether the reclosing
is a high-speed operation. In this work and as shown in Fig. 6,
these three sample points are designated as t1 (magenta circle),
t2 (black square), and t3 (blue triangle), respectively. The
location of these three sample points is determined using
the RMS signal, which is calculated using equation (3) as
described in Sect. II-A2 and is shown in Fig. 6 as a broken,
red line. For this event, the RMS window is set to half the
number of samples in each cycle (i.e., Nc/2).

The point t1 is the time at which the RMS voltage first
decays below a threshold and is determined by,

V̄ (t)

V̄q(t)
< τS, (19)

where V̄ is the RMS of the voltage, V̄q is the nominal RMS
voltage as determined from the first cycle, and τS = 0.9 is the
empirically selected threshold for the sag in voltage indicating
the start of a decay. The point t2 is determined as the time
at which the voltage decays low enough to be considered
approximately zero. An empirical threshold of τ0 = 0.01 was
used as the threshold below which the RMS voltage must reach
to be considered zero. If this condition is not met, then t2 is
the time at which the RMS voltage is at its minimum. The
RMS voltage must decay to below 50% of the nominal value
for the process to continue.

The voltage decay portion is the RMS voltage between
times t1 and t2 and is designated here as V̄D. The median
(i.e., middle value) of V̄D must be lower in magnitude than
the voltage at time t1 and higher than the voltage at time t2.
The mean of the first derivative of V̄D must also be negative
to indicate a downward slope or decrease in voltage. The
maximum first derivative of the voltage decay must also be
less than a threshold to ensure that the voltage decay was not
sudden. This condition is given by,

max |V̄ ′
D|

V̄q
< τl (20)

where V̄ ′
D is the first derivative of the decaying portion of the

RMS voltage, V̄q is the nominal RMS voltage, and τl = 0.5
is the empirically selected threshold for the maximum first
derivative of the decaying voltage. The point t3 is the time at
which the RMS voltage increases by 30% of nominal value
in one RMS sample. This condition is determined by the first
derivative of the RMS signal as given by,

max |V̄ ′
S |

V̄q
> τU (21)

where V̄ ′
S is the first derivative of the portion of the RMS

voltage after time t2, V̄q is the nominal RMS voltage, and
τS = 0.3 is the empirically selected threshold for the minimum
first derivative of the reclosing voltage. Time t3 is the point
when reclosing occurs and the voltage is restored.
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Fig. 7: A representation of the case in which the voltage signal
does not decay sufficiently prior to a successful reclosing
operation in the presence of a tapped motor load.

The criteria given thus far serve to classify the event as
normal reclosing with a tapped motor load. Fig. 6 is a normal
event in which there was sufficient time between t2 and t3.
If there is not sufficient time between these two points, then
the event is “flagged” as needing attention. The condition that
defines a high-speed reclosing operation is given by,

t3 − t2 > τHS (22)

where t2 is the time at which the voltage first decays to
zero, t3 is the time at which the voltage is restored, and
τHS = 30 cycles is the threshold for the minimum time the
voltage must be zero before reclosing as recommended [10].
Fig. 7 shows a case in which the minimum time for which the
voltages needs to be zero is not satisfied.

5) DC Offset: DC offsets in analog channels are a common
issue and when they are large enough can negatively impact
RMS calculations. A large DC offset is accounted for by
re-calibration of the corresponding monitoring or recording
device. Automated calculation of DC offset affords utility per-
sonnel the ability to prioritize re-calibration of those devices
associated with the largest amounts of DC offset. The DC
offset event is characterized by an asymmetry between the
positive and negative half-cycles of a voltage or current signal.

The presence and amount of DC offset is determined using
both time and frequency domain analysis. In the frequency
domain, a DC offset is present if the magnitude of the 0 Hz
frequency component is greater than 50% of the magnitude
at the fundamental frequency component (i.e., 60 Hz in the
United States). Mathematically this condition can be expressed
as,

X0

X1
> τf (23)

where X0 is the magnitude of the 0 Hz frequency component,
X1 is the magnitude at the fundamental frequency component,
and τf = 0.5 is empirically selected as the minimum ratio
with respect to the fundamental frequency. Fig. 8 provides a
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Fig. 8: Representative illustration of a large DC offset–from
40 ms to 90 ms–within a current signal.

representative illustration of a current signal in which a large
amount of DC offset is present from 40 ms to 90 ms. Fig. 9
shows the magnitude of the zeroth through fifth harmonic of
the current signal shown in Fig. 8. In this case, the 0 Hz
frequency component is over two times larger than that of
the fundamental frequency component (i.e., the first harmonic)
and would be “flagged” as a DC offset event. Interestingly,
the presence of the third harmonic indicates that another
disturbance is also present within the recorded signal of Fig. 8.

If the frequency domain analysis results in the identification
of a DC offset event, then time domain analysis is performed
as a validation step. Time domain analysis is conducted by
computing the mean over each cycle within the recorded
signal. If a given cycle’s mean value is zero, then there is
no DC offset present within that cycle. This is because the
area under the positive and negative portions of the cycle
would negate each other. However, if the selected cycle’s mean
exceeds 50% of the nominal signal’s peak value, then the DC
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Fig. 9: Illustration of the zeroth through fifth harmonic ratios
of current signal shown in Fig. 8.



(a) Voltage signal.

(b) Current signal.

Fig. 10: Voltage and current signals showing signal character-
istics associated with a motor starting event.

offset event “flag” is set once more. The amount of DC offset–
returned by the automated process–is,

argmax
i

µi, (24)

where µi is the mean value of the ith cycle within the signal
being processed.

6) Motor Starting: Instantaneous increases in current may
be due to faults, motor starts, transformer energizations, or
other events. Signatures present within the recorded signals
can be used to distinguish and classify each of these events.
PQ disturbances can then be correlated by event classification.
In the case of motor starting, the voltage sags and the current
can increase to five to six times its rated value [11]. It is
challenging to set protective relays in such a way to enable
recognition of a motor starting event rather than recognizing
the event as a fault on the system. The automated process
described in this section is developed under the assumption
that the corresponding relays are properly set so they do not
trip open when motor inrush current is present. Fig. 10a and
Fig. 10b show representative illustrations of motor starting
voltage and current signals, respectively.

The automated process checks for a voltage sag below 95%
of the signal’s nominal RMS value and a current spike to twice
the CT’s rated value determined by (13). If both of these con-
ditions persist for at least ten consecutive cycles, then the first
indicator of motor starting is identified. The persistence of both
conditions–for ten or more consecutive cycles–distinguishes
motor starting events from a fault condition, which typically
occurs for only several cycles before the relay trips open
the breaker. Motor starting events are also associated with
a frequency response that is low in harmonic content. Thus,
if none of the voltage or current signals’ harmonics exceed
15% of the fundamental frequency components magnitude,
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Fig. 11: A illustration showing the distinct current signal
generated during a six-pulse VFD motor start event.

then the second indicator of motor starting is identified. The
final indicator for motor starting is that all three conditions
(i.e., voltage sag, current spike, and harmonics below 15% of
the fundamental) occur on all three phases, because motors
are three phase devices.

7) Variable Frequency Drive Motor Starting: Some motors
utilize electronic starting (e.g., Variable Frequency Drives –
VFDs) to bring the motor up to speed in a controlled manner
to limit voltage supply disturbance(s). VFDs produce unique
harmonic patterns, which allows these events to be easily
identified by our automated process. When a VFD motor
starts, it creates a very distinct current signal. A representative
illustration of this distinct current signal can be seen in Fig. 11.

In Fig. 11, each phase has two pulses per half-cycle. The
number of pulses per half-cycle indicates the type of VFD
(e.g., six-pulse, twelve-pulse, etc.), thus VFD motor starting
events are identified by counting the number of times the
current signal drops below 50% of each cycle’s maximum
value. Two pulses in each half cycle of a current signal for
each phase (e.g., Fig. 11) would indicate a six-pulse VFD. The
number of pulses for the drive is given by,

Np =
3

2
×mode(K), K > 2 (25)

where K is number of times the current crosses 50% of each
cycle’s maximum value every half-cycle, and mode(K) refers
to the most often occurring value of K. The current must cross
the threshold more than two times for at least eight cycles
during the event to be considered VFD motor starting. After
Np is calculated, harmonic analysis is conducted, because
VFD motor starting events result in dominant harmonics on
either side of an integer multiple of Np. Fig. 12 shows the
harmonics for the six-pulse (i.e., Np = 6) VFD motor starting
event illustrated in Fig. 11. The fifth and seventh harmonics
are the two most dominant harmonics and occur on either
side of the sixth harmonic, which is equal to that of Np = 6.
The value of Np is validated by ensuring that the dominant
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Fig. 12: The harmonic ratios calculated from the current signal
of the six-pulse VFD motor start event shown in Fig. 11.

harmonics are at least five times larger than the value of the
harmonics at integer multiples of the Np. This validation check
is performed by,

HkNp±1

HkNp

> τV, (k = 1, 2, 3, 4) (26)

where Np is the number of pulses in the VFD, HkNp is the
harmonic at an integer multiple of Np, k is an integer, and
τV = 5 is the empirically determined threshold for the ratio
of the dominant harmonics with those at integer multiples of
Np. If equation (26) is satisfied, then the number of predicted
pulses is deemed correct. Finally, the event is identified as
VFD motor starting so long as all three currents (i.e., phase
A, B, and C) increase over the event’s duration.

8) Melting Fuse: Unlike a breaker, a blown (a.k.a., melted)
fuse requires utility personnel to physically replace it, so it is
helpful to distinguish fuse faults from breaker faults. These
two faults are distinguished from one another by the speed at
which the fault is cleared. Breakers require between two or
more cycles to clear a fault while fuses require less than two
cycles. Fig. 13 shows an example of a fuse melting event that
is cleared in a little more than one cycle.

The key to automated identification of fuse melting events
is accurate determination of the fault’s inception and clearing
points. A fuse melting event occurs if the total clearing time
was less than one and a half-cycles and is determined by,

|tI − tC | < τc (27)

where tI is the inception point, tC is the clearing point, and
τc = 1.5 is the threshold for the maximum fuse clearing time.

Automated identification of a fuse melting event is ini-
tialized by determining if the event persisted for at least a
quarter of a cycle and the current reaches at least twice its
nominal value over the event’s duration. The cycle before and
just after the portion associated with these two conditions is
then analyzed one half-cycle at a time to determine the fault
inception and clearing points. The three possible approaches

used to determine these points are: (i) a sign change in the
first derivative, (ii) a sudden increase in the second derivative,
and (iii) the current signal’s zero crossings.

The first derivative approach is implemented using equation
(4) as described in Sect. II-A3. A sign change in the first
derivative before or after the spike in current indicates the
fault inception and clearing points. This approach is used to
determine the inception and clearing points of the fuse melting
event shown in Fig. 13 where the red circle indicates the
fault inception point, and the black square indicates the fault
clearing point.

If the first derivative approach is unsuccessful (i.e., a sign
change in the first derivative does not exist), then the second
derivative is used as described in Sect. II-A3. The condition
for a large second derivative is given by,

max |I ′′(n)|
Îq

> τD2 (28)

where I ′′(n) is the second derivative of the current signal,
x̄c is the nominal peak current, and τD2 = 0.02 is the
empirically selected threshold for the minimum ratio of the
second derivative of the current to the nominal value. This
approach was used to determine the fault inception point of
Fig. 1 as described in Sect. II-A3.

If the second derivative approach is also unsuccessful (i.e.,
the minimum threshold is not met), then the fault inception
and clearing points are assumed to be the zero crossings just
before and just after the current spike, respectively. After the
fault inception and clearing points are determined, equation
(27) is used to determine whether the fault was short enough
in duration to be a melted fuse.

9) Ferroresonance: Ferroresonance is electric circuit res-
onance that occurs when a circuit containing a nonlinear
inductance is fed from a source that has a series capacitance
connected to it. In a transmission system, ferroresonance can
occur when a breaker–with grading capacitors–is used to de-
energize a bus that has magnetic Voltage Transformers (VTs)
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Fig. 13: A current signal during a fuse melting event that last
just over one cycle.
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Fig. 14: Illustration of a voltage signal collected during a
ferroresonance event.

connected to it. The described scenario presents a serious
safety risk to utility personnel and damage risk to equipment,
because severe overvoltages can occur despite the breaker
being in an open state. Ferroresonance manifests in the voltage
signals and causes the signals to take on a square wave like
shape/appearance. Fig. 14 provides a representative illustration
of the square wave appearance that a voltage signal can take on
due to ferroresonance. Another characteristic of ferroresonance
events is that the current is normally zero during the event.
This is due to the line being de-energized; however, depending
on the recording device’s location, the current can be recorded
as a nominal signal.

Ferrroresonance events are identified using three criteria:
(i) a large difference between discrete samples in the voltage
signal, (ii) this behavior continuing for a certain number of
cycles and often enough during that time, (iii) significant
harmonic content present in the voltage signal, and (iv) the
current signal is recorded as zero or a nominal waveform.

The first criterion is met if the first derivative of the voltage
signal exceeds 50% of nominal peak voltage as given by,

|V ′(n)|
V̂q

> τF (29)

where V ′(n) is the first derivative of the voltage signal, V̂q

is the nominal peak voltage, and τF = 0.5 is the empirically
selected threshold for the minimum ratio of the first derivative
of the voltage to the nominal value. The second criterion is met
if this threshold is exceeded a minimum of five times, occurs
at least every three cycles, and occurs for a length of at least
five cycles. The third criterion is met if one of the harmonic
currents is greater than 5% of the fundamental. Finally, the
fourth criterion is met if the RMS current is recorded as zero
or the current signal is nominal, which is characterized by a
small number of first derivative sign changes. This nominal
condition is given by,

NI

N
< τI (30)
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Fig. 15: Illustration of a voltage signal collected during ca-
pacitor switching event.

where NI is the number of first derivative sign changes in
the current as calculated using equation (4), N is the total
number of samples in the waveform, and τI = 0.3 is the
empirically selected threshold for the ratio of sign changes
to total samples.

10) Capacitor Bank Switching: One of the most common
events on a power system is capacitor bank switching. Ca-
pacitor bank switching induces temporary voltage transients
that can create PQ events. A typical capacitor bank switching
transient is characterized by a quick depression of the voltage
signal toward zero, followed by an overshoot and subsequent
transient disturbance–lasting approximately one cycle–as the
system returns to steady state. These voltage transients may
be recorded by devices that are connected to the same bus as
the capacitor bank as well as those connected to a different
bus. Based upon this fact, the presented automated process is
designed to identify capacitor switching for both recording
device connection scenarios. Fig. 15 shows an example of
capacitor bank switching in which a broken, red line highlights
the portion of the recorded signal associated with the event.

In a power transmission system, capacitor banks are simul-
taneously switched in on all three phases. Although Fig. 15
shows only a single phase, the other two phase voltage signals
are similar in appearance, but will not be identical due the 120◦

phase difference between each of the three signals (i.e., the
switching event occurs at different points of the corresponding
phase’s sinusoidal signal). The disturbance is located within
the signal using the first cycle as a reference as described
in Sect. II-A5 and shown in Fig. 2. The condition for the
difference between the actual and ideal voltage signals is given
by,

|V∆|
V̂q

> τ∆ (31)

where V∆ is the difference between the actual and ideal
voltage signals, V̂q is the nominal peak voltage value, and
τ∆ = 0.02 is the threshold empirically selected for this ratio.



Once the presence and location of the disturbance has been
determined, the disturbance’s duration is calculated to ensure
that it does not exceed two cycles. The voltage signal’s peak
values must satisfy one of these two criteria: (i) one peak 2%
above nominal value and no more than one peak 10% above
nominal value; (ii) exactly two peaks 10% above nominal
value occurring in neighboring cycles.

The next step is to determine the three characteristic points
highlighted on the waveform of Fig. 15, which are designated
as t1 (red circle), t2 (green square), and t3 (black triangle).
These points are indicative of a capacitor switching event.
First, the portion of the voltage signal one half-cycle before
and one half-cycle after the highest peak value is extracted
and designated as VO. The point t1 is determined as the first
point in which the voltage signal’s first derivative exceeded a
certain threshold as given by,

|V ′
O(n)|
V̂q

> τO (32)

where V ′
O(n) is the first derivative of the overvoltage cycle of

the voltage signal, V̂q is the nominal peak voltage value, and
τO = 0.02 is the threshold empirically selected for this ratio.
The first occurrence of this condition is determined to be t1.
The point t2 occurs at the lowest point the signal at which
the magnitude of voltage signal has dropped below 90% of
nominal peak value. The point t3 is then determined as the
time index of the highest peak of the voltage signal VO.

The location of these three characteristic points is then
validated using the following three checks: (i) the voltage
magnitudes at these points are the expected values, (ii) nominal
number of samples between the overvoltage and the peak prior
to it, (iii) the waveform slope is reversed at t1. For the first
check, the expected voltage magnitudes at t1, t2, and t3 must
follow the inequality given by,

|Vt2 | < |Vt1 | < |Vt3 |, (33)

where |Vt1 |, |Vt1 |, and |Vt3 | are the voltage magnitudes at times
t1, t2, and t3, respectively. The second check is that the peak
before must be approximately equal to Nc/2 samples before
the overvoltage peak as determined by,

NPB −Nc/2

Nc
< τP (34)

where NPB is the number of samples between the overvoltage
peak and the peak before it, Nc is the number of samples
in each cycle, and τP = 0.1 is the threshold empirically
selected for this ratio. Finally, the third check was validated
using (4) described in Sect. II-A3. If the first derivative of
the voltage signal leading up to t1 is of opposite sign than
the first derivative of the voltage between t1 and t2, then the
third check is met. After all these criteria are met for one of
the three voltage phases, the other two phases are analyzed to
ensure that some form of disturbance is present.
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Fig. 16: Illustration of a voltage signal collected during a
lightning strike event.

11) Lightning Strikes: Transient overvoltages due to light-
ning strikes on a transmission line are typically impulses with
a rise and decay time in the microseconds. Due to limitations
of instrument transformers to pass these high frequencies and
instrumentation sampling rates, lightning strike events are not
readily identified. A representative voltage signal that includes
a lightning strike event is shown in Fig. 16.

First, the automated identification process attempts to
identify the event as a capacitor bank switching event
(Sect. II-C10) and then a melting fuse event (Sect. II-C8).
These steps are taken to ensure that a lightning strike event
is not incorrectly identified as either of these two events–that
although similar to a lightning strike–are easily distinguished
from it as well as one another. If the event is not identified
as a capacitor bank switching or melting fuse event, then
the disturbance is isolated from the overall signal using the
exact same method as that given in equation (31) for the
isolation of the capacitor bank switching event’s disturbance.
The disturbance isolation process is repeated for each lightning
strike, and the longest strike duration is checked to ensure that
it does not exceed one cycle. If more than five disturbances are
isolated, then the event is not identified as a lightning strike.
In all of the processed data, lightning did not strike more than
three times during a single recording. So long as no more
than three lightning strike disturbances are isolated, then the
automated process identifies the event as a lightning strike
and returns the number of strikes along with the disturbance’s
duration in seconds.

12) Harmonic Resonance: Power systems have natural
frequencies that are a function of the system’s inductive and
capacitive impedance. When a nonlinear load on the power
system–such as a VFD–generates a frequency that is a natural
frequency (i.e., a multiple of the fundamental frequency) of
the power system, then a resonance condition can result. This
resonance can subject equipment to overvoltages or currents,
which can result in equipment failure or misoperation. Thus, it
is important to detect harmonic resonance conditions quickly,
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Fig. 17: Illustration of a voltage signal collected during a
harmonic resonance event.

so that appropriate and necessary actions can be taken to
correct the problem(s). Fig. 17 shows an example case of
harmonic resonance on an operationally recorded voltage
signal.

Harmonic resonance is characterized by the presence of
high frequency content in the voltage signals. Based upon
this information, the automated identification process first
calculates the Total Harmonic Distortion (THD) of the voltage
signal by,

VTHD =

√
M∑
i=2

|Hi|2

H1
, (35)

where Hi is the ith harmonic, H1 is the fundamental frequency,
M = 100 is the total number of harmonics used for the
calculation, and | • | denotes the magnitude [12]. If the THD
is greater than 8% of the fundamental frequency, then the
process continues else it moves onto the next event category.
A value of 8% was empirically selected but can be adjusted
as more data becomes available or based upon power system
specifics.

If the THD threshold is satisfied, then the automated iden-
tification process determines whether or not at least the sixth
or one of the higher harmonics is more than 5% of the
fundamental frequency’s magnitude. If this is the case, then
the sign changes in the first derivative are calculated for each
cycle using (4) as described in Sect. II-A3. The number of first
derivative sign changes in each cycle must be at least 10% of
the samples in each cycle Nc and also occur across three
cycles. If all these criteria are satisfied, then the automated
process identifies the event as harmonic resonance.

13) Improper Voltage Transformer Secondary Grounding:
It is good design practice to use a single and solid grounding
point on an instrument VT’s secondary [13]. Otherwise, the
result may be incorrect secondary voltage signals in both
magnitude and angle, which can lead to the misoperation of

(a) Phase B Voltage.

(b) Phase C Voltage.

Fig. 18: Voltage signals indicating improper VT secondary
grounding due to the simultaneous presence of a voltage sag
and swell on two phases.

protective relays. This can be exacerbated when faults occur
on the lines protected by these relays.

A key indicator of improper VT secondary grounding is
when one voltage phase is sagged while another one is swelled.
Fig. 18 provides a representative example of this indicator in
which the Phase B voltage signal is experiencing a sag from
250 ms to 300 ms (Fig. 18a) while the Phase C voltage signal
experiences a swell over the same time period (Fig. 18b).
Automated identification of improper VT secondary ground-
ing is facilitated by determining if a voltage sag and swell
simultaneously exists on two of the three voltage phases. In
this work, a sag occurs when one of the voltage signal’s peaks
falls below the nominal peak voltage by more than 5%, and
a swell occurs when one of the voltage peaks rises above the
nominal peak by more than 5%. The phase angle between the
sagged and swelled voltage phases is calculated by,

θ = cos−1

(
Vα ·Vβ

|Vα||Vβ |

)
, (36)

where Vα and Vβ are two of the three faulted voltage phasors,
· denotes dot product, and θ is the phase angle between Vα

and Vβ . The phase angle is calculated between phases: A to
B, B to C, and A to C. In a balanced system, the nominal
angle between two voltage phases is 120◦ [14]. If the phase
angle deviates from this 120◦ nominal angle by more than
5◦, then the event is identified as an improper VT secondary
grounding event.

14) Incipient Capacitive Voltage Transformer Failure:
Capacitive Voltage Transformers (CVTs) supply voltage to
protective relays, so it is very important that the CVT is
measuring voltage accurately. If a catastrophic CVT failure
results in a complete loss of this voltage, then the affected
relays detect the loss using Loss of Potential (LOP) logic
and act accordingly [15]. However, relays are not equipped
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Fig. 19: Illustration of a voltage signal showing an incipient
CVT failure event.

to detect a CVT that is showing early signs of failure by
providing incorrect data, but has not yet failed to provide
the supply voltage. The developed automated identification
process is designed to detect early indicators of impending
CVT failures to facilitate proper actions by utility personnel
or equipment. Additionally, a CVT failure poses a significant
safety risk to any utility personnel who happen to be nearby
when it fails. The voltage signal shown in Fig. 19 provides
a representative illustration of the early indicators of an
impending (a.k.a., incipient) CVT failure.

The first indicator of an incipient CVT failure event is
that one of the voltage signal’s peaks will contain a rise
or fall of more than 10% of the nominal peak value, and
this behavior must persist for at least three cycles. The
second incipient CVT failure indicator is that the disturbance
portion of the voltage signal will differ from its corresponding
nominal signal, by more than τ∆ = 0.02 as introduced in
Sect. II-A5 and implemented in (31). Since CVTs are single-
phase devices, incipient CVT failure would also only occur
in one phase, which is a differentiating factor between other
events. Finally, the current signal is analyzed to ensure that
no disturbance is present since this event type is specific to
voltage signals.

III. RESULTS

The performance of the developed rule-based, automated
electrical disturbance identification process is assessed us-
ing a data set comprised of 160 total event records that
were collected by field devices operating in a power utility’s
transmission system. This data set contains approximately ten
records for each of the discussed events. The data set also
contains events with undisturbed voltage and current signals
as well as single–phase and multi–phase events. Each phase
of every single–phase event is processed, thus tripling the
size of the associated event’s data set. False positive and
false negative event identifications are counted as incorrect

TABLE I: Automated electrical disturbance event identifica-
tion performance results.

Event Type # Events # Correct % Correct

CT Saturation 480 464 96.67%
A/D Clipping 960 953 99.27%
Induced Transient Noise 480 477 99.38%
High-Speed Reclosing 160 160 100%
DC Offset 960 956 99.58%
Motor Starting 160 160 100%
VFD Starting 160 160 100%
Blown Fuse 160 159 99.38%
Ferroresonance 480 476 99.17%
Capacitor Switching 160 159 99.38%
Lightning 480 477 99.38%
Harmonic Resonance 480 480 100%
VT Secondary Grounding 160 159 99.38%
CVT Failure 160 154 96.25%

or mis-identifications. If a signal did not contain one of the
listed electrical disturbances and the automated process did not
identify it as a disturbance, then it was counted as a correct
result. Overall automated identification results are presented in
Table I for each of the fourteen event types. Table I provides
the: number of events analyzed, number correctly identified,
and the percent correct accuracy for each event type.

A. Results: Current Transformer Saturation

The accuracy of the automated process in determining CT
saturation is 96.67% (i.e., correctly identifying 464 out of 480
total signals processed). The test for CT saturation proved
to be challenging due to the complexity of this event. The
range of criteria used may not always be met for each CT
saturation event. For example, the A/D clipping waveform
of Fig. 4 appears to contain CT saturation based on the
characteristic “kneeing” in the first two cycles of the fault.
However, DC offset is not present and the rating of the CT
was likely not exceeded, so this event could be incorrectly
classified. Also, for most of this testing, a CT ratio of 1,200:5
is used for each event type regardless of the actual CT
ratio. This was done for simplicity, but actual CT ratios from
COMTRADE configuration files will be used when these tools
are implemented in a production environment. When the actual
CT ratio is known, then the rated current of the CT will
be known and the automated process is able to accurately
determine whether this rating was exceeded.

B. Results: Analog-to-Digital Converter Clipping

The accuracy in detecting the A/D converter clipping event
is very high achieving an accuracy of 99.27% (i.e., correctly
identifying 953 out of 960 total signals processed). The
threshold for the number of consecutive repeated samples is set
to four samples. There are some events where clipping looks
obvious to the human eye, but the samples that looked repeated
are slightly different. Those results are counted as incorrect,
even though the automated process functioned properly. Each
utility’s personnel could decide whether events like these
actually are a problem with the A/D converter. The A/D
clipping detection methods should return proper results 100%



of the time if the repeated samples have the exact same value.
If they do not, then a very small tolerance (e.g., 10 V or
1 A) could be allowed between the magnitudes of samples
that appear to be the same value.

C. Results: Induced Transient Noise from Switching

Initial identification performance for this event was poor
at roughly 70%. In an effort to improve automated identifi-
cation of induced transient noise from switching events, the
automated process was modified by incorporating a rule in
which the presence of ferroresonance is checked first, then
harmonic resonance, and finally induced transient noise from
switching so that the three events not take place at the same
time. The reason for this is purely due to the similarity with
other events and the lack of distinguishing characteristics in
this one. Also, a change was made to use the first cycle as a
reference to isolate the disturbance as described in Sect. II-A5.
These changes result in an improved accuracy of 99.38% (i.e.,
correctly identifying 477 out of 480 total signals processed).

D. Results: High-Speed Reclosing with Tapped Motor Loads

The accuracy of this event was 100% in the tests that were
conducted. However, there were only two events in which
the voltage did not sufficiently decay before reclosing since
these events do not often occur if utilities are aware of special
settings that are needed for reclosers on such lines with tapped
motor loads. Thus, a larger data set will be needed to determine
the accuracy of this algorithm.

E. Results: DC Offset

The DC offset algorithm is one that is well-suited for rule-
based analytics as shown by its accuracy of 99.58% (i.e.,
correctly identifying 956 out of 960 total signals processed).
The frequency analysis method combined with the cycle mean
method are very accurate at identifying DC offset. A few
signals were falsely classified as DC offset. Signals such as the
CT saturation example in Fig. 3 contain a very steep spike at
the fault inception, so DC offset will be seen in that first half-
cycle. Further logic could be added in future work to account
for these faults so that DC offset is not detected in the first
half-cycle.

F. Results: Motor Starting

Motor starting events were very straightforward to iden-
tify. 160 out of 160 total signals were correctly identified.
One reason for the 100% accuracy is that the other events
analyzed did not have many similarities with motor starting.
Transformer inrush would produce a similar signal signature,
but the differentiating factor is that motor starting is not
as rich in harmonics. Motor inrush is also different from
single-phase (i.e., the most often occurring) faults in that the
elevated current always occurs across all three phases. For
these reasons, the motor inrush classification process should
be one of the most robust.

G. Results: Variable Frequency Drive Motor Starting

This event type also produced a 100% accuracy when
tested (i.e., correctly identifying 160 out of 160 total signals
processed). However, the 10 VFD starting events used were all
from the same motor on the transmission system since these
devices are not extremely common. More data will be needed
to test the accuracy of the process for this event type.

H. Results: Melted Fuse

The accuracy in classifying melted fuse events is 99.38% as
it correctly identified 159 out of 159 total signals. Melted fuse
events are relatively straightforward to identify due to their
short duration. One incorrect classification stemmed from an
event containing a minor fault that was incorrectly labeled as
a fuse fault. Although the fault lasted several cycles, the part
of the current that exceeded the threshold was short enough to
be classified as a blown fuse. The process of finding the fault
inception and clearing points is very nuanced, and it may not
always be 100% accurate in determining the clearing time,
especially for faults that do not greatly (e.g., two times the
rated current) exceed the predefined threshold.

I. Results: Ferroresonance

Ferroresonance is a unique event that was classified with
99.17% accuracy by these analytics (i.e., correctly identifying
476 out of 480 total signals processed). In most of the data
studied, the signals contain large gaps between samples (i.e., at
least 50% of nominal peak value). A few signals did not have
such large gaps, possibly due to the ferroresonance being less
severe. These events were not identified as ferroresonance, so
new methods will need to be developed in the identification
of these events. One such method could be incorporating
breaker statuses (i.e., open or closed) into the process since
ferroresonance usually occurs with the breaker(s) in the open
state.

J. Results: Capacitor Switching

The capacitor switching classification process correctly
identified 159 out of 160 total signals resulting in an accuracy
of 99.38%. The methods employed for this event type are
very detailed and are much more likely to generate false
negatives than false positives. As long as the characteristic
three points on the signal of Fig. 15 are present, the results
should be accurate. The only capacitor switching event that
was missed was one in which the voltage transient occurred on
the first cycle. Since the nominal peak value is taken using the
first cycle as a reference, the rest of the processing becomes
incorrect. This issue could be solved by using a predefined
nominal peak value for each voltage level from an external
data source.

K. Results: Lightning

The automated process correctly identified whether or not
lightning was present for 477 out of 480 signals for an accu-
racy of 99.38%. Originally, many capacitor switching events
were characterized as lightning. To remedy this, the process



Fig. 20: Voltage magnitude cyclic histogram for one hour of
operational data from a 161 kV transformer DFR.

was updated such that the presence of lightning would only be
checked if capacitor switching returned negative. The lightning
detection process relies on an accurate determination of the
duration of the disturbance. A short disturbance distinguishes
lightning from other events. A few events were discovered
in which the algorithm determined the disturbance to be
longer than it was, which could possibly be due to an outside
disturbance unrelated to lightning. This phenomenon results
in a few mis-classifications.

L. Results: Harmonic Resonance

Harmonic resonance is difficult to distinguish from ferrores-
onance, so a modification was made to only run the harmonic
resonance algorithm if ferroresonance has not occurred. This
resulted in an accuracy of 100% with 480 out of 480 signals
being correctly identified. There are 5 different harmonic
resonance event records in the data set for a total of 15 voltage
signals, so more data will be needed to test the robustness of
this algorithm. One future improvement that could be made
is to detect resonance under the 5th harmonic since resonance
conditions can sometimes develop that those frequencies.

M. Results: Voltage Transformer Secondary Grounding

The classification for this event was very successful with
an accuracy of 99.38% on the 160 signals studied. There
are a large number of events in which there is improper VT
secondary grounding. Many of the CT saturation faults are not
exactly 120◦ apart in their voltage phase angles, which would
indicate improper grounding. This event is straightforward to
classify by rule-based techniques. The only issue that may
occur is if inaccurate data are fed into the automated process.

N. Results: Incipient Capacitive Voltage Transformer Failure

The results for this event are not as accurate as the others
studied. 154 out of 160 signals (i.e., 96.25%) were correctly
classified as demonstrating incipient CVT failure or not. The
lower accuracy is due to the inconsistency in CVT failure
events. CVTs could be in different stages of their incipient
failure, so the signal signatures will not look the same. The
differentiating factor though is that these events are assumed
to only occur on one phase at a time, which improves the
results.

Fig. 21: Residual voltage magnitude histogram for one hour of
operational data from a 161 kV transformer DFR. The range of
magnitude has changed from 270 kV in the cyclic histogram
to 7 kV in the residual.

O. Results: Cyclic Histogram-based Continuous Signal Anal-
ysis

For continuous signal analysis, the developed program
successfully generated the time and frequency-based cyclic
histograms and associated residual histograms from a DFR
generated CSV file that contains a twenty-four hour period of
continuously recorded signals, which includes all three voltage
and current signals. After continuous signal processing, the
required storage space was reduced by a factor of 320 (i.e.,
35 GB to 72 MB). Fig. 20 and Fig. 21 provide representative
examples of the time-based and residual cyclic histograms
for one hour, respectively. The same hour of continuous data
associated with the cyclic histogram in Fig. 20 is used to
generate the frequency-based histogram in Fig. 22. Current
efforts are focused on integrating the developed program
into a power utility’s DFR. Part of this integration involves
reducing the amount of DFR compute and memory resources
needed to generate the frequency-based histogram and its
residual representation. The overarching goal is to use the
cyclic histograms to detect deviations within the corresponding
signal–that would not ordinarily result in an electrical distur-
bance event–for incipient prediction, detection, identification,

Fig. 22: Voltage frequency histogram for one hour of oper-
ational data from a 161 kV transformer DFR where f ∈
[59.9, 60.1]Hz. It is observed that the frequency tends to
operate 0.03 Hz below the intended 60 Hz, but no fault has
occurred.



or analysis. Ongoing work is focused on determining the
best method of presenting the cyclic histograms so they are
informative to PQ engineers.

IV. CONCLUSION

In this work, an approach was presented for automated iden-
tification of electrical disturbances in a power system. Fourteen
different disturbance event types were successfully classified
with an average accuracy of 99.13%, and continuous waveform
data were processed and stored using a technique known as a
cyclic histogram, which resulted in the file’s storage size being
reduced in size by a factor of 320. The developed processes
will result in time savings for utility personnel as well as
increase awareness of disturbances occurring on the power
system. This process can categorize events in a matter of min-
utes rather than hours or days, thus providing utility engineers,
operators, and managers with actionable intelligence that will
enable immediate and decisive corrective action. Impending–
or incipient–device failures will also be detected to enable
corrective action before complete failure so that safety hazards
can be removed. This work serves to increase the overall
reliability of the transmission system. One goal of future work
is to increase the number of disturbance event types that can be
classified and to further test the process using more data. For
the continuous waveform analysis portion, future work will
involve optimizing the process to reduce computing hardware
requirements and further developing the presentation of the
data in a useful manner.
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