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Abstract—Modern power systems may include a variety of 
technologies configured to monitor electrical and physical 
parameters. Such monitoring systems provide a wealth of 
information regarding the health and operation of systems. 
Normally, these measurements are uniform and behave in a 
consistent manner through time. Areas of interest in these 
measurements, possibly indicating that a mechanical system is 
failing, are rare. The volume of these data can be overwhelming 
to operators attempting to identify these areas of interest. 
Automated identification of anomalous events offloads the job of 
continuous monitoring from the operators and allows them to 
focus their attention elsewhere. 

In this paper, we describe a frequency-domain statistical 
anomaly detector recently installed at San Diego Gas & Electric 
to collect streamed measurements and process them to produce 
event summary notifications. Simultaneous monitoring of 
multiple stations enables geographic, time, and frequency 
correlation of events. We further discuss results of operating this 
system at San Diego Gas & Electric. 

I.  INTRODUCTION 
Phasor measurement units (PMUs) are an important tool 

for monitoring electrical transmission networks. They provide 
time-synchronized measurements (synchrophasors) 
continuously streamed at configurable rates through use of the 
IEEE C37.118 protocol. These measurements are aggregated 
at control centers and allow for convenient real-time analysis 
and visualization of systems. Visual analysis can identify 
many types of systems events, but effective real-time 
operation requires dedicated operation attention. Few 
automated analysis applications exist that are capable of 
performing such real-time analysis. This paper reports the 
algorithm and results of a real-time disturbance-detection 
system deployed at San Diego Gas & Electric (SDG&E). 

SDG&E provides electricity to a 4,100-square-mile area of 
southern California. More than 100 PMUs provide continuous 
measurements at 30 samples/second. These data are used for 
real-time trending and historical analysis. This system 
generates more than three million data points per minute and 
more than six terabytes of data per year. With so many data 
points, manual analysis is impractical. An around-the-clock, 
automated disturbance-detection system was necessary for 
locating and classifying disturbances in synchrophasor data 
streams. Requirements for the algorithm include a low false-
negative rate, algorithm tunability on a per-PMU basis, and 
simultaneous multi-frequency-range detection of oscillations. 

A wide range of events occur in power systems, such as 
low-frequency inter-area oscillations, local power-electronic 
induced control oscillations, normal system reconfiguration 

events, and faults. The growing number of renewable energy 
sources connected to grids can also present a source of 
instability [1]. For example, SDG&E has observed power 
oscillations at approximately 10 Hz associated with a wind 
farm operating near peak capacity. 

Several synchrophasor-based wide-area measurement 
systems (WAMS) have been previously described in [2], [3], 
[4], [5], and [6]. Of specific relevance to our algorithms and 
methods are the publications from Bonneville Power 
Authority (BPA) regarding their Oscillation Detection 
Monitor [5] and the algorithmic research from the University 
of Texas for event detection in the Texas Synchrophasor 
Network [1]. The purpose of this publication is to supplement 
this body of knowledge with real-world operational results of 
such a system and to share specific adjustments that have been 
employed to improve algorithm performance. 

II.  ALGORITHM 

A.  Methodology 
When choosing an algorithm to assist power system 

operators to detect oscillatory events, we first have to reiterate 
that the human in the loop, either operator or engineer, is the 
ultimate decision maker regarding event detection and 
classification. A detection system does not inherently need to 
characterize and catalog events; it can provide value by simply 
informing the operator that something unusual is occurring 
and present them with appropriate information with which to 
make a decision. We therefore focused first on building a 
system that was effective at detecting anomalous behavior 
with respect to oscillatory events. 

First, we collect short windows of power system data and 
convert them to the frequency domain via a discrete Fourier 
transform. Basic preprocessing, such as mean removal and 
windowing, is applied to reduce signal-processing artifacts. 

Next, we sum the oscillatory energy contained in various 
predefined frequency ranges. Several ranges have been 
proposed in previous literature [7] [8]. In our initial 
implementation, we chose frequency bands proposed by BPA 
for monitoring oscillations on the Western Interconnection [7] 
because SDG&E’s system is also located in this region. These 
frequency bands are 0.01–0.15 Hz, 0.15–1.0 Hz, 1.0–5.0 Hz, 
and 5.0–14.0 Hz.  

The values for the respective band oscillatory energy are 
recorded and indexed for quick searching and retrieval. On 
their own, these values are suitable for identifying potentially 
damaging oscillations if expert knowledge is available on 
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equipment susceptibility to power fluctuations. However, our 
goal was to develop a system requiring minimal 
preconfiguration. 

Because the oscillatory energy by itself does not provide an 
indication as to the presence of anomalous oscillatory 
behavior, we then looked to statistical analysis methods. One 
prevalent method for identifying anomalous values in a data 
set involves use of the z-ratio. The z-ratio [9] is a statistic 
calculated by taking a sample value, x, and normalizing it by 
subtracting the mean and dividing by the standard deviation, 
as shown in (1). This results in a unitless value that represents 
by how many standard deviations a sample value deviates 
from the mean. In practical applications, the mean and 
standard deviation values are calculated from a sliding one-
hour window of data preceding the present measurements. 
These z-ratios are similarly recorded and indexed. 

 previous _ hour

previous _ hour

x x
z
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B.  Implementation Details 

    1)  Statistics 
When calculating the mean and standard deviation for 

z-ratio calculations, it is important to remember that the power 
system is constantly evolving. As such, running recursively 
updated statistics for weeks or months would tend to produce 
false positives because the behavior on a summer day might 
be highly anomalous when compared with statistics recorded 
during the winter. We found that calculating the statistics over 
a rolling one-hour window immediately preceding the present 
values provided good results. 

We did, however, identify the need to temporarily suspend 
statistical updates during an event. Because the z-ratio during 
an event could be in the hundreds of standard deviations, 
updating the statistics during the event resulted in a large 
statistical skew. This skew resulted in two undesirable 
operating characteristics. First, detection of a sustained 
oscillation tended to conclude before the actual event 
concluded. As the anomalous behavior worked its way into 
the statistics, that behavior was no longer considered 
anomalous. Second, after the conclusion of an event, the 
statistics were artificially high, making the z-ratio less 
sensitive to subsequent events. This could potentially mask 
new events for as long as an hour after the first event 
concluded. Suspending the update of statistics during an event 
effectively removed both of these undesirable artifacts. 

    2)  Detection Thresholds 
Identification of an oscillatory event is accomplished 

through the comparison of the present z-ratio to a predefined 
threshold. From analysis of data provided by SDG&E, we 
found that an instantaneous pickup with a threshold of thirty 
standard deviations worked well. Thus, we would alert 
operators if a measurement of oscillatory energy exceeded the 
previous hour’s mean by 30 times the previous hour’s 
standard deviation. We also identified the need to apply 
alternative thresholds on a station-by-station basis. Some 
stations, due to proximity to noise-inducing equipment, would 

fail to detect an event. If future analysis of operational data 
reveals such a situation, we will set the threshold for PMUs at 
that station to a lower level. 

We also found that many momentary conditions created 
spikes in the z-ratio but were uninteresting to operators. To 
filter these spurious events out, we included a pickup timer so 
that an event notification would only be triggered if the z-ratio 
exceeded its threshold for a user-specified minimum duration. 
We intend to fine-tune the settings based on operator feedback 
and review of operational data. We anticipate that this fine-
tuning will result in a smaller threshold for disturbance level 
with a non-zero pickup time to more effectively identify real 
events while filtering out spurious data.  

    3)  Simultaneous Events 
When an oscillatory event of interest occurs, it is often 

detected simultaneously by multiple stations. In order to not 
overload operators with redundant information, we designed 
the system to automatically group similar events that overlap 
chronologically into one event notification. 

Once these events are consolidated, we compare the 
relative magnitudes of the energy and z-ratio across the 
stations. The list of affected stations is then sorted by 
disturbance level; highest on top, with less-strongly affected 
stations below. This aids operators in identifying the location 
of the event because the stations most closely coupled with the 
event will often have similar energy values, and a sharp drop 
in disturbance level will indicate which stations are less 
affected. 

    4)  Threshold and Pickup Tuning 
In addition to calculating statistics and z-ratios on newly 

arriving data, this system additionally calculates these values 
for the historical archive. The indexed energy and z-ratios 
(Fig. 1) can be easily searched to identify suitable thresholds 
that will indicate historical events of interest while minimizing 
spurious alerts. Here we considered the tradeoff between the 
nuisance of false positives (spurious alerts) resulting from a 
low threshold versus the operational impact of false negatives 
from a high threshold. A false positive results in a nuisance 
alert that costs operators a few seconds to review and clear. 
False negatives can potentially result in system damage due to 
degraded situational awareness and delayed remedial action. 
Given this tradeoff, we chose to configure a low threshold to 
minimize the probability of false negatives.  

 

Fig. 1. Software display from detected oscillation 
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With this constraint in mind, we propose the following 
method by which to tune the detection parameters. First, an 
engineer would employ the built-in search function to find the 
largest z-ratio threshold that detected all the events of interest. 
Once a suitable threshold is identified, gradually increase the 
pickup time to reduce the number of spurious detections while 
retaining all desired detections. 

III.  SAN DIEGO GAS & ELECTRIC RESULTS 

A.  Introduction to SDG&E Disturbance Results 
The authors developed and deployed an automated 

disturbance-detection algorithm into SDG&E’s wide-area 
situational awareness software application. Due to the large 
number of PMUs that SDG&E has deployed and the limited 
availability of operators and engineers to analyze these data, 
automatic detection of disturbances and oscillations is of 
significant benefit to SDG&E. 

The developed disturbance-detection algorithm is currently 
deployed at SDG&E. The results shared in this paper represent 
a summary from one week of data gathered at SDG&E. Fig. 2 
summarizes the daily count of detected disturbance per day for 
this period. 
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Fig. 2. Distribution of detected disturbances over a one-week period 

The detected disturbance count varies greatly day to day. 
Many of the detected disturbances are likely linked to the 
same root cause. As the severity of the resulting oscillations 
varies above and below the detection threshold, multiple 
related event notifications may be generated. A significant 
number of the detected disturbances for Days 1, 2, 5, and 7 (as 
shown in Fig. 2) were tied to repeated oscillations attributed to 
the same root cause. This is the primary reason for the spike in 
disturbances when compared to Days 3, 4, and 6.  

To effectively diagnose and mitigate the causes of these 
oscillations, operators and engineers need to be able to quickly 
identify, locate, and analyze them for impact. To facilitate 
this, the oscillation detection software includes an event 
summary notification to quickly alert operators to the 
situation. 

Fig. 3 through Fig. 5 show examples of the event summary 
notification displayed by the software. This is the primary 
display by which an SDG&E operator or engineer interfaces 
with the oscillation detection system. The left side of the 
notification displays plots of system frequency (top), voltage 
magnitude (middle), and disturbance level (bottom) for the 
five most strongly affected PMUs. The system frequency plot 
shows the raw data from which the disturbance level is 

calculated. The disturbance level plot represents the z-ratio as 
described in (1) and provides a general indication of how 
abnormal the present condition is. The voltage magnitude plot 
is also included as some detected events are more visible to 
operators via the voltage magnitude than frequency signals.  

The right side of the event notification provides 
quantitative information regarding to what extent various 
PMUs were affected by the event.  

The notification displays the 15 most strongly affected 
PMUs ordered by disturbance level. To aid in comparison, a 
percentage of maximum disturbance level is also provided. 
For example, the top station always has 100%; subsequent 
stations show their disturbance level divided by the top 
stations disturbance level expressed as a percentage. Below 
this list, the notification indicates how many stations in total 
detected this event.  

Also on the right side, the notification identifies in which 
of the four frequency band(s) the event was detected and the 
frequency of peak energy.  

B.  Example 1–Local Oscillation 
The increase of renewable energy penetration in the form 

of solar and wind generation on SDG&E’s system is changing 
the operation of the grid and introducing new challenges in the 
form of high-frequency oscillations.  

In the example shown in Fig. 3, the system identified an 
oscillation in the 5–14 Hz frequency band associated with 
three PMUs whenever the solar plant reached peak power.  

 
Fig. 3. Software display from detected oscillation 

In this example, the high-frequency oscillation is clearly 
visible to the operator via the voltage magnitude plot (Fig. 3, 
center). PMU 1, PMU 2, and PMU 3 each show a percentage 
at or above 99%, with the next largest below 50%. These three 
PMUs are all located in the same substation. PMU 4 and 
PMU 5, with impact levels approximately 50% of PMU 1, are 
located in neighboring substations. The oscillation originated 
from a solar farm connected to the substation being monitored 
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by PMU 1, PMU 2, and PMU 3. This particular oscillation 
was detected by PMUs throughout SDG&E’s system. 

The 5.08 Hz disturbance was grouped into the 5–14 Hz 
frequency band typically associated with generators, HVDC, 
and SVC [7]. This encourages the operator to investigate high-
frequency sources like solar or wind farms near the substation 
containing PMU 1, PMU 2, and PMU 3. 

C.  Example 2–Line Trip Across Utility Interconnection 
In addition to detecting abnormal power system conditions 

such as oscillations, synchrophasor data also provide operators 
and engineers additional insight and wide-area context for 
traditional power system operations such as line and 
generation trips. Due to the real-time nature of 
synchrophasors, Operations personnel at SDG&E often use 
synchrophasor data to determine faulted phases for a line trip 
prior to collection and analysis of the relay event records. The 
real-time synchrophasor data also provide visibility into the 
reclosing of transmission lines (in particular, inability to close 
due to too large of an angle difference across the line). The 
process of analyzing these line trips is greatly simplified by 
automatic detection and operator notification. 

Fig. 4 shows an example display of a line trip detected on a 
line between SDG&E and a neighboring utility. PMU 1 and 
PMU 2 monitor the 230 kV bus and lines across the 
interconnection. The disturbance impact at these PMUs is 
significant when compared to the rest of the system, as is 
typical for line trip events. PMU 3 is monitoring a 138 kV line 
out of the substation, and PMU 4 and PMU 5 monitor two 
500 kV lines out of the substation. The remaining PMUs are 
located in neighboring substations within SDG&E’s system. 

 
Fig. 4. Software display from detected line trip 

D.  Example 3–WECC Generation Trip 
The goals for utilities like SDG&E that cover relatively 

small geographic areas when compared to the size of the 
Western Interconnection are different when compared with 
those of transmission system operators (which are the 

traditional consumers of disturbance and oscillation detection 
tools). SDG&E Operations personnel are primarily interested 
in detecting disturbances and oscillations that occur within or 
near their geographic region. If the disturbance occurs within 
their region, they are likely able to take corrective action and 
improve the reliability of the power system for their 
customers. 

The disturbance-detection algorithm deployed at SDG&E 
is currently based on detecting statistical anomalies in 
frequency measurements. As a result, disturbances and 
oscillations that occur throughout the entire interconnection 
will be detected. Because SDG&E Operations is primarily 
interested in disturbances within their region, it is important 
for an operator or engineer to be able to quickly determine if 
the disturbance source location is within their region or not. 

Fig. 5 shows an example of a generation trip that occurred 
outside of SDG&E’s region of the Western Interconnection. In 
general, SDG&E operators and engineers can determine if a 
disturbance is out of their system by looking for the following 
criteria in the software display: 

• The disturbance impact for the top 15 PMUs are 
within several percentage points of one another. 

• Every PMU within the system detects the disturbance. 
This method of determining whether a disturbance is in-

system or out-of-system assumes that the electrical distance 
between SDG&E’s PMUs is negligible when compared to the 
electrical distance to disturbance location. This method of 
determination may not work for disturbances that occur in 
neighboring systems, but it can be augmented by 
incorporating data from several PMUs in the neighboring 
systems.  

 
Fig. 5. Software display from detected WECC generation trip 
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IV.  CONCLUSION AND FUTURE WORK 
This system has been successfully deployed at SDG&E. 

The automatic detection and notification capability has freed 
SDG&E operators and engineers from the burden of 
continuously monitoring hundreds of PMU streams to 
manually identify events. As more PMUs are deployed to 
SDG&E’s system, especially in distribution, this capability 
will be even more valuable to SDG&E operators and 
engineers. 

In addition, the system has detected a few anomalies that 
were not visible to the eye from directly viewing the PMU 
stream. These are often small-magnitude, high-frequency 
events that are typically hidden in the noise. They are detected 
when a PMU that typically has minimal energy in the 5–14 Hz 
band begins to exhibit oscillations in this range. We anticipate 
that detailed study of these events may provide additional 
insight into control system calibration drift or impending 
equipment failure. 
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