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Abstract-- A high density, smart home power quality monitor 

network records high-resolution voltage data. An in-depth 

examination of this voltage data has led to the identification, 

localization, and resolution of countless residential power quality 

problems across the U.S. These problems range from loose neutral 

connections to out-of-range base voltage. A more rigorous analysis 

of this same voltage data reveals distinctive characteristic patterns 

that help identify overloaded or degrading transformers before 

their ultimate failure. 

 
Index Terms-- Distribution Transformer, Smart Grid, Power 

Quality 

I.  INTRODUCTION 

he sensor is a passive electrical safety monitoring device 

that plugs into a standard three-pronged outlet in a 

residential home. It monitors electricity in the home with two 

independent channels. The first, high speed channel samples the 

voltage 27 million times every second (27 MHz), 24x7x365. 

This channel focused exclusively on high frequency (HF) 

signals that are optimized to detect electrical arcing signals. The 

second is focused on lower frequency voltage signals and 

samples at 30 thousand samples per second, or 30 KHz. This 

channel is used for all Vrms measurements and power quality 

measurements. The sensor measures voltage in a range from 20 

- 160 volts with an accuracy of one percent (1.0%) and a 

resolution of 0.1047 volts. A third, independent channel is 

optimized to measure voltage surges up to 3 KV. Therefore, the 

sensor can analyze the quality of power delivered at a very high 

resolution. 

As of the published date of this paper, the network is actively 

monitoring 100,000 homes across the United States. While the 

main purpose of the system is early detection of the precursors 

of electrical fires within the home, the system also monitors the 

voltage supplied to the home to detect fire hazards that can 

originate with the servicing utility outside the home.  

 

An accurate estimate of the number of distribution 

transformers in the United States was not available; suffice to 

say, there are several million in existence today. For Exelon, the 

number of failures per year was indicated on the order of 2,000, 

representing 0.5% percent of their fleet each year. [1] 

 

Based on analysis of the sensor voltage data over the past 18 

months, we hypothesized that sensor network could detect a 

potentially failing transformer by sampling household voltage 

over several days. As of 1 October 2021, the sensor network 

had identified nearly 350 suspected struggling distribution 

transformers, with each diagnosis confirmed by the responding 

servicing utility crew. 

II.  DISCUSSION 

Typically, a household's air conditioning uses more power 

than any single appliance in a house. Installed in nearly 90% [2] 

of all U.S. houses, air-conditioning units on average account for 

48% of a home's energy consumption. [3] Consequently, 

contending with summer heat is responsible for the greatest 

electrical consumption in the U.S. and represents the largest 

load on a distribution transformer. In turn, daily household 

power consumption can be - and is often - directly related to the 

outside temperature.  

 

During Power Quality reviews in the summer of 2020, a 

significant number of sensors reported unusual and meandering 

voltage patterns, similar to a sinusoid. A more rigorous review 

of this sinusoidal behavior indicated a correlation between air 

temperature in the region and the amplitude of the sinusoidal 

voltage pattern (see Figure 1). 

 
Fig. 1.  Plot of root-mean-square (rms) Voltage vs. Time. The red line 
indicates the voltage, the green line indicates wind speed, the yellow line 

indicates the chance of precipitation, and the blue line indicates temperature. 

The voltage values are on the left axis, the weather values are on the right 
axis. The meandering, "sinusoid" voltage pattern can be seen - along with its 

peak during the coldest time of day - and its trough during the hottest time of 
day. 

 

An invaluable discovery arose in June 2020, when one case 

allowed us to look at a home's voltage both before and after a 

distribution transformer was replaced. Before replacement, 

sensor data exhibited the sinusoidal pattern. After replacement, 

the sinusoidal voltage pattern ceased (see Figure 2). 

 

Based on this observation, we hypothesized that increased air 

temperatures correlate to increased demand from air-

conditioning systems, which increases electrical current 
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demand on a given transformer. This increased load, in turn, 

manifests itself as large daily voltage swings only for 

transformers that are in a state of degradation. As expected, 

these large voltage swings correlated well with temperature 

over the day. 

 

 
Fig. 2.  This scatter plot illustrates the difference in the changing voltage 

before and after replacing the distribution transformer serving the home. The 
daily change in Vrms is plotted on the y-axis, with the daily high temperature 

on the x-axis. The circular points illustrate the change in voltage for a given 

daily high temperature before transformer replacement, while the "+" points 
indicate the same data after replacement. This plot shows a correlation 

between the maximum daytime temperature and the voltage change for an 

overloaded transformer. 

 

As of 1 October 2021, the system had identified nearly 350 

homes across the United States exhibiting this unique voltage 

behavior. In response, a tool was developed to identify these 

sites based on two simple criteria: the maximum air temperature 

observed near the home and the difference between the highest 

and lowest voltage (minus outliers to exclude transient events) 

observed by a home's sensor during the day. 

 

Where everyday data over a period (typically several weeks) 

has an adequate temperature variation - and is plotted as a 

scatter plot of change in the voltage (delta-V) versus maximum 

air temperature for the day - positive slope for homes that 

exhibit sinusoidal voltage behavior is observed. Furthermore, 

when a least-squares fit is applied, the positive slope can be 

quantified (See Figure 3). 

 

 
Fig. 3.  Scatter plot showing the relationship between the daily change in 

voltage and the maximum temperature during the day. The daily change in 
voltage is plotted on the y-axis, while the temperature is represented on the x-

axis. The plot illustrates that once reaching a certain daily high temperature, 

the voltage begins to vary significantly over the course of the day. 
Furthermore, this variation becomes more extreme as the maximum 

temperature increases. 

 

When comparing this data to similar data from a transformer 

known to be new and operating under similar conditions, the 

difference is immediately identifiable (See Figure 4). 

 

 
Fig. 4.  A scatter plot of change in voltage vs. maximum daytime temperature. 

This plot illustrates the difference between a transformer believed to be 

struggling (transformer 1) and a normal operating transformer (transformer 2).  

 

Subsequently, the use of Fourier Transforms (FT) and a 

cosine best fit identify potential faulty/overloaded transformer 

sites using data from just two and a half consecutive hot days. 

In this case, the FT algorithm of best fit processes the 

characteristic sinusoidal pattern, and frequency and amplitude 

are defined (see Figure 5). The units are such that the frequency 

component of one equates to 1 cycle/day. 

 

 
Fig. 5.  Two and a half days of voltage data, centered around zero, and its 

best-fit cosine curve. The plot shows the sinusoidal nature of a transformer 

dependent on the outside temperature. At t=0 the voltage data started at 
approximately 5 am for the homeowner's local time, therefore having the 

highest likelihood for cool temperatures and least load. In turn, this 

corresponds with a max voltage at t = 0, or a cosine curve with little phase 
shift. 

 

Using the amplitude calculated from a least squares curve 

fitting with 

 

𝑉(𝑡) = 𝐴 ∗ cos(2𝜋𝑓𝑡 + 𝜑 )           (1) 

 

where V(t) is voltage with respect to time, A is amplitude, f is 

frequency, 𝜑 is phase shift, and t is time. Using this equation, a 

measure of the transformer’s condition can be defined (see 

Figure 6). Each sinusoid is centered around its respective mean. 

 

The difference is readily observable when a suspected 

struggling transformer is plotted alongside a normal 

transformer (see Figure 6). 
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Fig. 6.  Voltage data from Figure 6 compared to a normal operating 
transformer's voltage, plotted in blue. The voltage in blue is from the same 

sensor as the linear comparison presented in Figure 5. Both voltages are taken 

from the hottest two and one-half consecutive days in August, with 
temperatures above or near 100 degrees. A well-behaved transformer may still 

show some daily sinusoidal patterns. However, when comparing the blue 

(normal) voltage to the red voltage of the failing transformer, the blue cosine 
fit possesses an amplitude value that is smaller than an order of magnitude 

than the red voltage's amplitude. 
 

It can be computationally exhaustive to fit thousands of data 

points with a best-fit cosine function. It is also time-consuming 

to wait weeks or months for a transformer's delta voltage vs. 

temperature relationship to reveal itself. Fortuitously, a Fourier 

analysis can reveal a struggling transformer using a single day's 

output voltage. In order to accomplish this, the frequency unit 

is set to one cycle per day. The voltage data for the day is then 

analyzed using a Fourier analysis that calculates the different 

sinusoidal characteristics of the data ranging from one up to 10 

cycles per day.  

 

In Figure 7, a Fourier analysis was conducted on two 

transformers (one suspected of struggling, and the other thought 

to be good) from 0 frequency to 10 cycles per day. This plot 

reveals a significant response around 1 Hz (cycle/day), as the 

voltage output inversely follows the outside temperature and 

has a large one cycle/day component in the data. The control 

transformer's voltage output dependency is so low on the daily 

load that the expected noise in the voltage data greatly 

outweighs any frequency component.  

 
Fig. 7.  This plot illustrates the results of the Fourier analysis. The graph for 

the struggling transformer has a strong response around 1 Hz, indicating that a 

struggling transformer will produce a voltage graph that cycles like a sine 
wave over the course of a day. The same response is not present for a 

transformer that is operating properly. This approach is consistent with the 

methods of identifying struggling transformers. 

 

Fourier analysis demands less data and is computationally 

easier; the results are consistent with the earlier analyses. 

 

III.  CONCLUSION 

Voltage data collected inside tens of thousands of homes 

across the country reveal a characteristic sinusoidal pattern that 

has shown to be associated with degrading or failing 

distribution transformers. This behavior manifests itself when 

the transformer is under heavy load, typically associated with 

significant air-conditioning demand on high heat days. 

 

The data was subjected to several analytical methods to 

define key parameters that indicate the presence of an 

overloaded or degrading transformer. One of these methods 

requires just a single day of data with the transformer under load 

to identify if it is behaving normally or not.   

 

If the voltage patterns detected by the sensor network can be 

validated using inspections of transformers in the field, this 

would define a method to identify overloaded or degrading 

transformers that utilize remotely detected secondary voltage. 

 

At scale, this method of detection of failing distribution 

transformers can: 1) enable predictive versus reactive 

maintenance of distribution transformers, 2) lower the costs of 

distribution transformer ownership and maintenance, 3) 

improve customer power quality, 4) improve customer 

satisfaction with fewer truck rolls and definitive, actionable 

data on arrival, and 5) help prevent wildfire ignitions. 

 

IV.  FUTURE WORK 

As of 1 October 2021, the sensor network had identified 

nearly 350 suspected struggling distribution transformers. The 

sensor data needs to be corroborated with utilities to proactively 

correlate potentially failing transformers identified using the 

sensor data with physical evidence (also known as 'ground 

truth') before repair/replacement. This will allow us to validate 

our data and methodology further. 
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